1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet [91]
3 years ago
7

Lizzy has 2 friends her friends are playing ball

Mathematics
1 answer:
krek1111 [17]3 years ago
4 0
Okay so (+584)x(-5748)=3,377,856 show my work is In my big brain that doesn’t exist
You might be interested in
Pleaseplease help me
Mars2501 [29]

Answer:

1,4

Step-by-step explanation:

The anwser is 1,4

4 0
3 years ago
Find the length x to the nearest whole number. A right triangle has a vertical leg of length x units, a base leg with a length o
wel

Complete Question

The diagram for this question is shown on the first uploaded image

Answer:

The value of x is  x = 274 \ unites

Step-by-step explanation:

From the question we are told that

       The length of the vertical length is  x

      The length of the base leg is L = 330 + d units

      The length of the bisecting line segment is h

       The base angle is \theta  = 28^o

       The angle between d and line segment is  \theta_1 =  56^o

For the first angle

         Tan \theta_1 =  \frac{x}{d}

=>     d =  \frac{x}{Tan \theta _1}

 For the whole big triangle

      Tan \theta = \frac{x}{330 + d}

=>     d = \frac{x}{Tan \theta }  -330

So equating the both d

        \frac{x}{Tan \theta _1} =    \frac{x}{Tan \theta }  -330

Substitute values

        \frac{x}{Tan (56)} =    \frac{x}{Tan (28) }  -330

      0.6745 x =    1.880x  -330

       1.20549 x = 330

       x = 274 \ unites

     

   

5 0
3 years ago
Simplify the algebraic question 3(2x+5)-4
saul85 [17]
6x+15-4
6x+11
Hope this helps
6 0
3 years ago
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
3 years ago
The general form of the equation of a circle is ax2 by2 cx dy e = 0, where a = b 0. if the circle has a radius of 3 units and th
aev [14]

The set of values which might correspond to the circle are A = 1, B = 1, C = 0, D = -8 and E = 7.

<h3>The equation of a circle.</h3>

Mathematically, the general form of the equation of a circle is given by;

(x - h)² + (y - k)² = r²

<u>Where:</u>

  • h and k represents the coordinates at the center.
  • r is the radius of a circle.

Based on the information provided that the center of the circle lies on the y-axis, we have:

(h, k) = (0, 4)

Radius, r = 3 units.

Substituting the given parameters into the formula, we have;

(x - 0)² + (y - 4)² = 3²

x ² + y² - 8y + 16 = 9

x ² + y² - 8y + 7 = 0.

Therefore, the set of values which might correspond to the circle are A = 1, B = 1, C = 0, D = -8 and E = 7.

Read more on circle here: brainly.com/question/1615837

#SPJ1

<u>Complete Question:</u>

The general form of the equation of a circle is Ax² + By² + Cx + Dy + E = 0, where A = B. If the circle has a radius of 3 units and the center at (0, 4), which set of values of A, B, C, D, and E correspond to the circle?

4 0
2 years ago
Other questions:
  • The radius of a sphere is 6 inches. Find the length of a chord connecting two perpendicular radii
    7·2 answers
  • The MCAT is the admission exam that medical schools use as one of the criteria for accepting students. The exam is based on a sc
    11·1 answer
  • What is 2/3 divided by 1/2
    14·1 answer
  • What is 3g-7g^3+5g^2-6 in standard form? With steps on how to get answer
    13·2 answers
  • The perimeter of a square table is 12x,+4. what is the length of one side of the table
    13·1 answer
  • How many cubic inches of storage space are in Leo’s cabinet ? Please help :)
    8·1 answer
  • Name an angle of <br><br> A) 40°
    13·2 answers
  • the weight of 3 kittins at one week of age were 3.6 ounces 4.2ounces and 3.3 ounces if each kitten has gained 2.3ounces how much
    6·1 answer
  • How can you use factoring to solve quadratic equations in standard form ?
    10·1 answer
  • PLEASE HELP!! Need by 3/29/22!<br> Find the area of these shapes
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!