Answer:
270 m/s²
Explanation:
Given:
α = 150 rad/s²
ω = 12.0 rad/s
r = 1.30 m
Find:
a
The acceleration will have two components: a radial component and a tangential component.
The tangential component is:
at = αr
at = (150 rad/s²)(1.30 m)
at = 195 m/s²
The radial component is:
ar = v² / r
ar = ω² r
ar = (12.0 rad/s)² (1.30 m)
ar = 187.2 m/s²
So the magnitude of the total acceleration is:
a² = at² + ar²
a² = (195 m/s²)² + (187.2 m/s²)²
a = 270 m/s²
Answer:
0.47 N
Explanation:
Here we have a ball in motion along a circular track.
For an object in circular motion, there is a force that "pulls" the object towards the centre of the circle, and this force is responsible for keeping the object in circular motion.
This force is called centripetal force, and its magnitude is given by:

where
m is the mass of the object
is the angular velocity
r is the radius of the circle
For the ball in this problem we have:
m = 40 g = 0.04 kg is the mass of the ball
is the angular velocity
r = 30 cm = 0.30 m is the radius of the circle
Substituting, we find the force:

Answer:
B. the force of friction of the road on the tires
Explanation:
Unless the car engine is like jet engine, the main force that accelerates the car forward is the force of friction of the road on the tires, which is ultimately driven by the force of engine on the tires shaft. As the engine, and the shaft are part of the system, their interaction is internal. According to Newton laws of motion, the acceleration needs external force, in this case it's the friction of the road on the tires.