Answer:
![\alpha =\frac{m*g*R}{I-m*R^2}](https://tex.z-dn.net/?f=%5Calpha%20%3D%5Cfrac%7Bm%2Ag%2AR%7D%7BI-m%2AR%5E2%7D)
![a = \frac{m*g*R^2}{I-m*R^2}](https://tex.z-dn.net/?f=a%20%3D%20%5Cfrac%7Bm%2Ag%2AR%5E2%7D%7BI-m%2AR%5E2%7D)
![T=\frac{I*m*g}{I-m*R^2}](https://tex.z-dn.net/?f=T%3D%5Cfrac%7BI%2Am%2Ag%7D%7BI-m%2AR%5E2%7D)
Explanation:
By analyzing the torque on the wheel we get:
Solving for T: ![T=I/R*\alpha](https://tex.z-dn.net/?f=T%3DI%2FR%2A%5Calpha)
On the object:
Replacing our previous value for T:
![I/R*\alpha-m*g = -m*a](https://tex.z-dn.net/?f=I%2FR%2A%5Calpha-m%2Ag%20%3D%20-m%2Aa)
The relation between angular and linear acceleration is:
![a=\alpha*R](https://tex.z-dn.net/?f=a%3D%5Calpha%2AR)
So,
![I/R*\alpha-m*g = -m*\alpha*R](https://tex.z-dn.net/?f=I%2FR%2A%5Calpha-m%2Ag%20%3D%20-m%2A%5Calpha%2AR)
Solving for α:
![\alpha =\frac{R*m*g}{I+m*R^2}](https://tex.z-dn.net/?f=%5Calpha%20%3D%5Cfrac%7BR%2Am%2Ag%7D%7BI%2Bm%2AR%5E2%7D)
The linear acceleration will be:
![a =\frac{R^2*m*g}{I+m*R^2}](https://tex.z-dn.net/?f=a%20%3D%5Cfrac%7BR%5E2%2Am%2Ag%7D%7BI%2Bm%2AR%5E2%7D%20)
And finally, the tension will be:
![T =\frac{I*m*g}{I+m*R^2}](https://tex.z-dn.net/?f=T%20%3D%5Cfrac%7BI%2Am%2Ag%7D%7BI%2Bm%2AR%5E2%7D%20)
These are the values of all the variables: α, a, T
Answer:
7 hectometers is 7000 decimeters
The speed of sound through air at room temperature is almost always 343 m/s. However, since it doesn't tell you that, use the equation wavelength=velocity/frequency. Plug in the numbers: 1.4=v/247, and v=345.8 m/s.