I
don't know because this is the question which I never heard
Answer:
0.583 kilojoules
Explanation:
The amount of heat required to pop a single kernel can be calculated using the formula as follows:
Q = m × c × ∆T
Where;
Q = amount of heat (J)
m = mass of water (g)
c = specific heat capacity of water (4.184 J/g°C)
∆T = change in temperature
From the given information, m = 0.905 g, initial temperature (room temperature) = 21°C , final temperature = 175°C, Q = ?
Q = m × c × ∆T
Q = 0.905 × 4.184 × (175°C - 21°C)
Q = 3.786 × 154
Q = 583.044 Joules
In kilojoules i.e. we divide by 1000, the amount of heat is:
= 583.04/1000
= 0.583 kilojoules
Last option that is none of above is right answer.
1 mol of any gas or mix of gases at STP conditions will have a volume of 22.4 L. Since the problem doesn’t said what are the conditions I will asume that are STP condition and the volume of one mole of the mix will have a volume of 22.4 L.
You may know that density is
D=m/v
In one mole of air I will have 80% of Nitrogen (N2) and 20% oxygen (O2).
So the mass of one mole of air will be
14 x2x0.80+16x2x0.20 = 22.4 g + 6.4 g = 28.8 g
D= 28.8/22.4 = 1.28 g/L
Of course if the temperature is higher the density will be smaller because the volume of one mole will be bigger and viceversa if the temperature decrease. Also if the pressure is different than one atm the volume of a mol will change.