A) For balanced chemical equation: 2HgO(s) → 2Hg(l) + O₂(g).
1) Mole ratio 1: n(HgO) : n(Hg) = 2 : 2 (1 : 1).
2) Mole ratio 2: n(HgO) : n(O₂) = 2 : 1.
3) Mole ratio 3: n(Hg) : n(O₂) = 2 : 1.
B) Balanced chemical equation: 4NH₃(g) + 6NO(g) → 5N₂(g) + 6H₂O(l).
1) Mole ratio 1: n(NH₃) : n(NO) = 4 : 6 (2 : 3).
2) Mole ratio 2: n(NH₃) : n(N₂) = 4 : 5.
3) Mole ratio 3: n(NH₃) : n(H₂O) = 4 : 6 (2 : 3).
4) Mole ratio 4: n(NO) : n(N₂) = 6 : 5.
5) Mole ratio 5: n(NO) : n(H₂O) = 6 : 6 (1 :1).
6) Mole ratio 6: n(N₂) : n(H₂O) = 5 : 6.
Answer: I found this online. Hope it helps you.
Explanation:
This pressure is transmitted throughout the liquid and makes it more difficult for bubbles to form and for boiling to take place. If the pressure is reduced, the liquid requires less energy to change to a gaseous phase, and boiling occurs at a lower temperature.
You can get the answer on quizlet or google
Answer:
The answer to your question is: letter D.
Explanation:
Noble gases are located in group VIIIA of the periodic table, this means that they have 8 eight electrons in their outermost shell.
Due to this characteristic, they are stable and do not react with other elements.
a. 1s22s22p4 The outermost shell of this electron configuration has 6 electrons, then this element has 6 electrons not 8. This configuration is of an element of the group VIA.
b. [Ne]2s22p2 The outermost shell of this element has 4 electrons, so this is not the configuration of a noble gas.
c. [Ar] 3s1 This element only has one electron in its outermost shell, so this is the electron configuration of an alkaline metal.
d. 1s22s22p6 This element has 8 electrons in its outermost shell, so this is the electron configuration of a noble gas.
Answer: There are
molecules present in 7.62 L of
at
and 722 torr.
Explanation:
Given : Volume = 7.62 L
Temperature = 
Pressure = 722 torr
1 torr = 0.00131579
Converting torr into atm as follows.

Therefore, using the ideal gas equation the number of moles are calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.

According to the mole concept, 1 mole of every substance contains
atoms. Hence, number of atoms or molecules present in 0.244 mol are calculated as follows.

Thus, we can conclude that there are
molecules present in 7.62 L of
at
and 722 torr.