The formula to find the volume of the composite solid is: C. V = πr²h + ⅔πr³.
<h3>How to Find the Volume of a Composite Solid?</h3>
The volume of the composite solid in the image given = Volume of cylinder + volume of hemisphere.
Volume of cylinder = πr²h
Volume of hemisphere = ⅔πr³
Therefore, formula to find the volume is: C. V = πr²h + ⅔πr³.
Learn more about volume of composite solid on:
brainly.com/question/23642076
#SPJ1
Answer:
I'm not 100% sure I'm right but I think x = -1
because it says "f(x)" and then it says"Find f(-1)" so that is why I think x = -1
Answer:
D
Step-by-step explanation:
our basic Pythagorean identity is cos²(x) + sin²(x) = 1
we can derive the 2 other using the listed above.
1. (cos²(x) + sin²(x))/cos²(x) = 1/cos²(x)
1 + tan²(x) = sec²(x)
2.(cos²(x) + sin²(x))/sin²(x) = 1/sin²(x)
cot²(x) + 1 = csc²(x)
A. sin^2 theta -1= cos^2 theta
this is false
cos²(x) + sin²(x) = 1
isolating cos²(x)
cos²(x) = 1-sin²(x), not equal to sin²(x)-1
B. Sec^2 theta-tan^2 theta= -1
1 + tan²(x) = sec²(x)
sec²(x)-tan(x) = 1, not -1
false
C. -cos^2 theta-1= sin^2
cos²(x) + sin²(x) = 1
sin²(x) = 1-cos²(x), our 1 is positive not negative, so false
D. Cot^2 theta - csc^2 theta=-1
cot²(x) + 1 = csc²(x)
isolating 1
1 = csc²(x) - cot²(x)
multiplying both sides by -1
-1 = cot²(x) - csc²(x)
TRUE
Answer:
720,682.92
Step-by-step explanation:
8.5% = 0.085
P(t) = Initial Population * (1 + rate)t
P(t) = 230,000(1 + 0.085)t
P(t) = 230,000(1.085)t
P(14) = 230,000(1.085)14
P(14) = 720,682.82
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em><em> </em><em>⤴</em>
<em>Hope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>u</em><em>.</em><em>.</em><em>.</em>
<em>But</em><em> </em><em>I</em><em> </em><em>can't</em><em> </em><em>see</em><em> </em><em>the</em><em> </em><em>question</em><em> </em><em>no</em><em>.</em><em>2</em><em>6</em><em> </em><em>clearly</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>so</em><em> </em><em>text</em><em> </em><em>the</em><em> </em><em>question</em><em> </em><em>in</em><em> </em><em>comment</em><em> </em><em>box</em><em>.</em>