Answer:
A. Heat the solution
Explanation:
To make a supersaturated solution, make a saturated solution of sugar by adding 360 grams of sugar to 100 mL of water at 80 degrees Celsius. When the water cools back down to 25 degrees, that 360 grams of sugar will still be dissolved even though the water should only dissolve 210 grams of sugar.
About 63% of the fat in butter is saturated fat
Qc < Kc, the reaction proceeds from left to right to reach equilibrium
<h3>Further explanation
</h3>
Given
K = 50.2 at 445°C
[H2] = [I2] = [HI] = 1.75 × 10⁻³ M At 445ºC
Reaction
H2(g) + I2(g) ⇔2HI(g)
Required
Qc
Solution
Qc for the reaction
Qc < Kc ⇒ reaction from left(reactants) to right (products) (the reaction will shift on the right) until it reaches equilibrium (Qc = Kc)
Answer:
you can classify a mineral by its appearance and other properties. The presence of a mineral is defined by the color and luster, and the color of the powdered mineral is described by the band. Every mineral has a distinctive density. To compare the hardness of rocks, the Mohs Hardness Scale is used.
Explanation:
Answer:
810 pm
Explanation:
Step 1: Given and required data
- Velocity of the atom (v): 490 m/s
- Mass of a hydrogen atom (m): 1.67 × 10⁻²⁷ kg
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
Step 2: Calculate the de Broglie wavelength of the hydrogen atom
We will use de Broglie's equation.
λ = h / m × v
λ = 6.63 × 10⁻³⁴ J.s / 1.67 × 10⁻²⁷ kg × 490 m/s = 8.10 × 10⁻¹⁰ m
Step 3: Convert 8.10 × 10⁻¹⁰ m to picometers
We will use the conversion factor 1 m = 10¹² pm.
8.10 × 10⁻¹⁰ m × 10¹² pm/1 m = 810 pm