Answer:
λ = 1.1×10⁸ m
Explanation:
Given data:
Frequency of wave = 2.7 Hz
Wavelength of wave = ?
Solution:
Formula:
Speed of wave = frequency × wavelength
Speed of wave = 3×10⁸ m/s
now we will put the values in formula.
3×10⁸ m/s = 2.7 s⁻¹ × λ
λ = 3×10⁸ m/s /2.7 s⁻¹
λ = 1.1×10⁸ m
Answer:
17.04 g/mol
Explanation:
Molar Mass of NH₃
we know that
Nitrogen has 14.01 gram/mol
And Hydrogen has 1.01 gram/mol
but we have 3 Hydrogens So we multiply
1.01 by 3 i.e., 3.03
Now, add
14.01
+<u> </u><u>3</u><u>.</u><u>0</u><u>3</u>
17.04
So, The molar mass of ammonia, NH₃ is
17.04 g/mol
<u>-TheUnknown</u><u>Scientist</u>
a. AgBr(s)⇒ Ag⁺(aq) + Br⁻(aq)
b. Ksp AgBr = s²
c. 5 x 10⁻¹³ mol/L
<h3>Further explanation</h3>
Given
solubility AgBr = 7.07 x 10⁻⁷ mol/L
Required
The dissolution reaction
Ksp
The solubility product constant
Solution
a. dissolution reaction of AgBr
AgBr(s)⇒ Ag⁺(aq) + Br⁻(aq)
b. Ksp
Ksp AgBr = [Ag⁺] [Br⁻]
Ksp AgBr = (s) (s)
Ksp AgBr = s²
c. Ksp AgBr = (7.07 x 10⁻⁷)² = 5 x 10⁻¹³ mol/L
Yes, when molten candle wax solidifies it is a chemical reaction
<u>Explanation:</u>
Basically Wax is crystalline so once the candle light melts it freezes taking back the solid state to the room temperature.
When the room temperature is below the freezing point, the liquid candle wax, turns into solid state again, therefore this process is called solidification. The process of freezing or solidification is a process when an object turns liquid and freezes back to solid state.
Indeed, Yes, when molten candle wax solidifies it is a chemical reaction