Answer:
Because it keeps track of all the elements
Notice how the K and Ag are both being swapped around.
Single Replacement:
A+BX → B+AX
Double Replacement:
AX+BY → BX + AY
Answer:
Project 3.
Explanation:
Project 3's anticipated cost is 12 to 17 million dollars. It is a <em>lower </em>anticipated cost than Project 2 and Project 4, but <em>higher</em> than Project 1 by one million dollars at maximum cost anticipation. Additionally, the percentage of wildlife to benefit is 70-80%, which is <em>second</em> to the most wildlife to benefit which is Project 4 at 75-80%.
And finally, for community support for Project 3 - the chart lists it as high. This outclasses Project 2 and Project 4, but balances with Project 1. However, Project 1 costs 13 to 16 million dollars and <em>only</em> benefits 15-25% of wildlife.
Answer:
Statements Y and Z.
Explanation:
The Van der Waals equation is the next one:
(1)
The ideal gas law is the following:
(2)
<em>where n: is the moles of the gas, R: is the gas constant, T: is the temperature, P: is the measured pressure, V: is the volume of the container, and a and b: are measured constants for a specific gas. </em>
As we can see from equation (1), the Van der Waals equation introduces two terms that correct the P and the V of the ideal gas equation (2),<u> by the incorporation of the intermolecular interaction between the gases and the gases volume</u>. The term an²/V² corrects the P of the ideal gas equation since the measured pressure is decreased by the attraction forces between the gases. The term nb corrects the V of the ideal gas equation, <u>taking into account the volume occuppied by the gas in the total volume, which implies</u> a reduction of the total space available for the gas molecules.
So, the correct statements are the Y and Z: the non-zero volumes of the gas particles effectively decrease the amount of "empty space" between them and the molecular attractions between gas particles decrease the pressure exerted by the gas.
Have a nice day!