The Roman Numeral, as far as we know, was the only written numbering system used in Ancient Rome andEurope until about 900 AD, when the Arabic Numbering System, which was originated by the Hindu's, came into use.
This is vague. Any dimensions that make a triangle can make more than one, just draw another right next to it. What's really being asked is which dimensions can make more than one non-congruent triangle.
<span>A. Three angles measuring 75°,45°, and 60°.
That's three angles, and 75+45+60 = 180, so it's a legit triangle. The angles don't determine the sides, so we have whole family of similar triangles with these dimensions. TRUE
<span>B. 3 sides measuring 7, 10, 12?
</span>Three sides determine the triangles size and shape uniquely; FALSE
<em>C. Three angles measuring 40</em></span><span><em>°</em></span><em>, 50°</em><span><em>, and 60°? </em>
40+50+60=150, no such triangle exists. FALSE
<em>D. 3 sides measuring 3,4,and 5</em>
Again, three sides uniquely determine a triangle's size and shape; FALSE
</span>
Answer:
A) from the line of best fit, the approximately y-intercept is (0,1.8). This means without any practice, 1h.8 games are won.
B) slope: (5.6-1.8)/(2-0) = 1.9
y = 1.9x + 1.8
(Line of best fit)
x = 13,
y = 1.9(13) + 1.8 = 26.5
Predicted no. of games won after 13 months of practice is 26.5
Answer:
-9y-2(2-7y)+4 expand the brackets using-2
Step-by-step explanation:
-9y-4+14y+4
arrange the like terms
-9y+14y-4+4
=5y becoz -4+4=0
ans=5y
<span>gravitational potential energy : P
Gravity : g
Mass : m
height : h
P = mgh = 3 x 9.8 x 0.45 = 13.23 Joule
Potential energy is work , from the known formula
W = Fd ( work = force x distance )
W = P ( in case of potential energy height change)
F is the force acting on the body in case of ideal ramp , the only force acting is the weight of the body
F = mg ( not just <m> as the force is mg (Newton) gravity effect)
d is the displacement in direction of force, as we have considered the force to be the weight not it's component in direction of the ramp , the change in displacement is the change in height so
d = h
W = Fd = (F = mg) x (d = h) = mgh
W = mgh = P
</span>