Answer: A. The acceleration of an object is determined by its mass and the net force acting on it.
Explanation:
Newton's second law of motion explains that the acceleration of an object will depend on two vital variables which are the mass of the object and the net force that's acting on it.
It should be noted that the acceleration of the object directly depend on the net force while it depends inversely on the mass. Therefore, when the force that's acting on such object is increased, then the acceleration will increase as well. On the other hand, when there is an increase in mass, there'll be a reduction in the acceleration.
Answer:
The electric force between them is 878.9 N
Given:
Identical charge C
Separation between two charges m
For finding the electrical force,
According to the coulomb's law
Here, force between two balloons are repulsive because both charges are same.
Where N Therefore, the electric force between them is 878.
Explanation:
Answer:
derecha, izquierda, derecha, arriba
Explanation:
Answer:
5 fringes option C
Explanation:
Given:
- The wavelength of blue light λ = 450 nm
- The split spacing d = 0.001 mm
Find:
How many bright fringes will be seen?
Solution:
- The relationship between the wavelength of the incident light, grating and number of bright fringes seen on a screen is derived by Young's experiment as follows:
sin(Q) = n* λ / d
Where, n is the order of bright fringe. n = 0, 1, 2, 3, ....
- We need to compute the maximum number of fringes that can be observed with the given condition and setup. Hence we will maximize our expression above by approximating sin(Q).
sin(Q_max) = 1
Q_max = 90 degree
- Hence, we have:
n = d / λ
- plug values in n = 0.001 *10^-3 / 450*10^-9
n = 2.222
- Since n order number can only be an integer we will round down our number to n = 2.
- Hence, we will see a pair of bright fringes on each side of central order fringe.
- Total number of fringes = 2*2 + 1 = 5 fringes is total ... Hence, option C
5 is fossil fuels I believe