Answer:
The particle of a gas are very far apart from each other.
Explanation:
The states of matter comprises of solid, liquid and gas. The molecules of gas are free because they are not tightly held together by molecular force. The force between the molecules has been broken, hence the particles possesses the freedom to move about thereby possessing high kinetic energy (energy possessed by a body due to its motion). Since this molecules can easily move freely, they are always far apart from each other under ordinary temperature and pressure.
I only know about the Water tank which is the most accurate. You place your body in it, and weights are added I think. Somehow some measurements are gathered to get your body fat weight. Online calculators exist, as well as electronic waves that are sent int your body, the echo is recorded and analyzed.
Remember Newton's second law: F=ma
to get the force in newtons, mass should be in kg and acceleration in m/s^2
conveniently, we don't need to convert units
we just need to multiply the two to get the force
65* 0.3 = 19.5 kg m/s^2 or N
if significant digit is an issue, the least number if sig figs is 1 so the answer would be 20 N
Answer:
The maximum velocity is 0.377 m/s
Explanation:
Please, the solution is in the Word file attached
Answer:
The index of refraction of the liquid is n = 1.33 equivalent to that of water
Explanation:
Solution:-
- The index of refraction of light in a medium ( n ) determines the degree of "bending" of light in that medium.
- The index of refraction is material property and proportional to density of the material.
- The denser the material the slower the light will move through associated with considerable diffraction angles.
- The lighter the material the faster the light pass through the material without being diffracted as much.
- So, in the other words index of refraction can be expressed as how fast or slow light passes through a medium.
- The reference of comparison of how fast or slow the light is the value of c = 3.0*10^8 m/s i.e speed of light in vacuum or also assumed to be the case for air.
- so we can mathematically express the index of refraction as a ratio of light speed in the material specified and speed of light.
- The light passes through a liquid with speed v = 2.25*10^8 m/s :

- The index of refraction of the liquid is n = 1.33 equivalent to that of water.