We will use this formlula: Mass in grams = Number of moles x Molecular mass of 1 mole.
Since, we know the avagadro number is 6.02 x 10²³, we only have two unknown values left which are the molecular mass of CH3OH and its mole.
Molecular Mass: C = 12, H= 1, O = 16, since we have C=12, H4 = 4, O = 16, we will add them up: 12 + 4 + 16 =32
We know that one mole of anything = 6.02 x 10²³.
So we will use this formula to find the mole of methanol: Number of moles = Number of molecules / Avagadro number
Number of moles of CH3OH = (9.79 x 10^24)/6.02 x 10²³) = 16.263 moles.
Now we know that the molecular mass = 32 and the mole is = 16.263.
Now we can find its mass by using this formula: <span>Mass in grams = Number of moles x Molecular mass of 1 mole.
</span>
Mass in grams = 16.263 x 32 = 520g
1) Zn + 2 HCl = ZnCl2 + H2 ( <span>single replacement )
2) </span>2 NaCl + F2 = 2 NaF + Cl2 ( <span>single replacement )
3) </span>2 AlBr3 + 3 K2SO4 = 6 KBr + Al2(SO4)3 ( <span>double replacement )
4) </span>2 K + MgBr2 = 2 KBr + Mg ( <span>single replacement )
Answer 3
hope this helps!</span>
Answer : The volume of hydrogen gas at STP is 4550 L.
Explanation :
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 100.0 atm
= final pressure of gas at STP = 1 atm
= initial volume of gas = 50.0 L
= final volume of gas at STP = ?
= initial temperature of gas = 
= final temperature of gas at STP = 
Now put all the given values in the above equation, we get:


Therefore, the volume of hydrogen gas at STP is 4550 L.
This is a combination reaction. Look at the 2 elements on left and a compound on the right.
Metal because it’s more stronger