Answer:
Lipids
Explanation:
Lipids perform many different functions in a cell. Cells store energy for long-term use in the form of lipids called fats. Lipids also provide insulated from the environment for plants and animals
Answer: 0.05
Explanation:Divide the length (1.5 cm) by the number of turns (30)
Using accurate measurements, using pure chemicals and performing the reaction under the most ideal conditions is important to get a valuable percent yield.
<h3>How we calculate the percent yield?</h3>
Percent yield of any chemical reaction is define as the ratios of the actual yield to the theoretical yield of the product and multiply by the 100.
To get the high percent yield or actual yield of any reaction, we have to perform the reaction under ideal condition because if we not use the standard condition then we get the low rate of reaction. Reactants should be present in the pure form as impurity make unwanted products and reduce the productivity of main product and accurate amount of reactants also important for the spontaneous reaction.
Hence, options (a), (b) & (c) are correct.
To know more about percent yield, visit the below link:
brainly.com/question/8638404
A solution (in this experiment solution of NaNO₃) freezes at a lower temperature than does the pure solvent (deionized water). The higher the
solute concentration (sodium nitrate), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
First measure freezing point of pure solvent (deionized water). Than make solutions of NaNO₃ with different molality and measure separately their freezing points. Use equation to calculate Kf.
<u>Given:</u>
Moles of He = 15
Moles of N2 = 5
Pressure (P) = 1.01 atm
Temperature (T) = 300 K
<u>To determine:</u>
The volume (V) of the balloon
<u>Explanation:</u>
From the ideal gas law:
PV = nRT
where P = pressure of the gas
V = volume
n = number of moles of the gas
T = temperature
R = gas constant = 0.0821 L-atm/mol-K
In this case we have:-
n(total) = 15 + 5 = 20 moles
P = 1.01 atm and T = 300K
V = nRT/P = 20 moles * 0.0821 L-atm/mol-K * 300 K/1.01 atm = 487.7 L
Ans: Volume of the balloon is around 488 L