Ideal Gas law PV=nRT
P- pressure(atm)
V-volume( liter)
R- gas constant
T- temperature(kelvin)
n - number of moles
Answer:
A. Cu^+2(aq)cathode ---> Cu^+2(aq)anode
Explanation:
Electrolysis is the process in which current is passed through a solution thereby causing a chemical change at the anode and cathode. Copper is being purified using electrolysis by using impure copper at the anode and pure copper at the cathode. This pure and impure copper are placed in a copper(ii)sulfate electrolyte solution and dc current is made to pass through it. The resulting changes at the anode and cathode are given by the equation:
cathode: Cu²⁺ + 2e⁻ ⇒ Cu
anode: Cu ⇒ Cu²⁺ + 2e⁻
Here we apply the Clausius-Clapeyron equation:
ln(P₁/P₂) = ΔH/R x (1/T₂ - 1/T₁)
The normal vapor pressure is 4.24 kPa (P₁)
The boiling point at this pressure is 293 K (P₂)
The heat of vaporization is 39.9 kJ/mol (ΔH)
We need to find the vapor pressure (P₂) at the given temperature 355.3 K (T₂)
ln(4.24/P₂) = 39.9/0.008314 x (1/355.3 - 1/293)
P₂ = 101.2 kPa
The given molarity of sodium hydroxide solution = 2.0 M
The required concentration of sodium hydroxide is 65 mL of 0.6 M NaOH
Converting 65 mL to L:

Calculating the moles of NaOH in the final solution:

Finding out the volume of 2.0 M solution taken to prepare the final solution:

Therefore, 19.5 mL of 2.0 M NaOH solution and make it up to 65 mL to prepare 0.6 M NaOH solution.
Answer:
They are Weaker than a chemical
<h2>bond</h2>
corrected by the one in the comment section