the thing that helps is always gonna help that’s why u should always help
Answer:
First part: The new volume of the gas is 1786 Liters.
Second part: The temperature required to change the volume of the gas sample is 347 °C
Explanation:
We assume the Charles - Gay Lussac law where, in constant pressure, volume of a gas changes directly proportional to Temperature (in Kelvin)
V1 / T1 = V2/T2
37°C + 273 = 310 K
82°C + 273 = 355 K
1560L / 310°K = V2 / 355K
(1560 / 310) . 355 = V2
1786 L = V2
1560 L / 310 K = 3120 L / T2
T2 = 3120 L . (310 K / 1560 L)
T2 = 620 K
620K - 273 = 347°C
Answer:
1244 students
Explanation:
That would be y = 82*3 + 998
= 1244.
First, we need the balanced equation: H₂ + Cl₂ ---> 2HCl
since not much information is given, I am assuming we are at STP and that 22.4 Liters= 1 mol
1) let's convert the volume to moles using the molar volume of a gas. also we need to convert the cm₃ to mL, then to Liters.
8 cm³ (1 ml/ 1 cm³)(1 L/ 1000 mL) (1 mol/ 22.4 Liters)= 3.6x10⁻⁴ moles of H₂
2) let's use the mole ratio of the balanced equation to convert moles of H₂ to moles of HCl
3.6x10⁻⁴ mol H₂ (2 mol HCl/ 1 mol H₂)= 7.1x10⁻⁴ mol HCl
3) lastly, we convert the moles of HCl to grams using the molar mass.
molar mass of HCl= 1.01 + 35.5= 36.51 g/mol
7.1x10⁻⁴ mol HCl (36.51 g/mol)=<span> 0.026 grams HCl</span>
Answer:
Cl⁻, Na⁺, OH⁻
Explanation:
The titration is:
CuCl₂(aq) + 2 NaOH(aq) → Cu(OH)₂(s) + 2 NaCl(aq)
In solution, before the reaction, the ions are Cu²⁺ and Cl⁻. The addition of NaOH (Na⁺ + OH⁻) produce the precipitation of Cu²⁺ forming Cu(OH)₂(s). When you reach the equivalence point, there is no Cu²⁺ because precipitates completely. All OH⁻ ions reacts when are added but when Cu²⁺ is finished, excess OH⁻ ions still in solution helping to detect the equivalence point.
Thus, ions present after the equivalence point are:<em> Cl⁻, Na⁺</em> (Don't react, spectator ions), and <em>OH⁻</em>.