Martha’s new weight is 77.25. 3% of 75 is 2.25 and you can find that by multiplying 75 by .03 and adding that number to 75. hope this helps!
<span><span><span>1. An altitude of a triangle is a line segment from a vertex perpendicular to the opposite side. Find the equations of the altitudes of the triangle with vertices (4, 5),(-4, 1) and (2, -5). Do this by solving a system of two of two of the altitude equations and showing that the intersection point also belongs to the third line. </span>
(Scroll Down for Answer!)</span><span>Answer by </span>jim_thompson5910(34047) (Show Source):You can put this solution on YOUR website!
<span>If we plot the points and connect them, we get this triangle:
Let point
A=(xA,yA)
B=(xB,yB)
C=(xC,yC)
-------------------------------
Let's find the equation of the segment AB
Start with the general formula
Plug in the given points
Simplify and combine like terms
So the equation of the line through AB is
-------------------------------
Let's find the equation of the segment BC
Start with the general formula
Plug in the given points
Simplify and combine like terms
So the equation of the line through BC is
-------------------------------
Let's find the equation of the segment CA
Start with the general formula
Plug in the given points
Simplify and combine like terms
So the equation of the line through CA is
So we have these equations of the lines that make up the triangle
So to find the equation of the line that is perpendicular to that goes through the point C(2,-5), simply negate and invert the slope to get
Now plug the slope and the point (2,-5) into
Solve for y and simplify
So the altitude for vertex C is
Now to find the equation of the line that is perpendicular to that goes through the point A(4,5), simply negate and invert the slope to get
Now plug the slope and the point (2,-5) into
Solve for y and simplify
So the altitude for vertex A is
Now to find the equation of the line that is perpendicular to that goes through the point B(-4,1), simply negate and invert the slope to get
Now plug the slope and the point (-4,1) into
Solve for y and simplify
So the altitude for vertex B is
------------------------------------------------------------
Now let's solve the system
Plug in into the first equation
Add 2x to both sides and subtract 2 from both sides
Divide both sides by 3 to isolate x
Now plug this into
So the orthocenter is (-2/3,1/3)
So if we plug in into the third equation , we get
So the orthocenter lies on the third altitude
</span><span>
</span></span>
Well, we could try adding up odd numbers, and look to see when we reach 400. But I'm hoping to find an easier way.
First of all ... I'm not sure this will help, but let's stop and notice it anyway ...
An odd number of odd numbers (like 1, 3, 5) add up to an odd number, but
an even number of odd numbers (like 1,3,5,7) add up to an even number.
So if the sum is going to be exactly 400, then there will have to be an even
number of items in the set.
Now, let's put down an even number of odd numbers to work with,and see
what we can notice about them:
1, 3, 5, 7, 9, 11, 13, 15 .
Number of items in the set . . . 8
Sum of all the items in the set . . . 64
Hmmm. That's interesting. 64 happens to be the square of 8 .
Do you think that might be all there is to it ?
Let's check it out:
Even-numbered lists of odd numbers:
1, 3 Items = 2, Sum = 4
1, 3, 5, 7 Items = 4, Sum = 16
1, 3, 5, 7, 9, 11 Items = 6, Sum = 36
1, 3, 5, 7, 9, 11, 13, 15 . . Items = 8, Sum = 64 .
Amazing ! The sum is always the square of the number of items in the set !
For a sum of 400 ... which just happens to be the square of 20,
we just need the <em><u>first 20 consecutive odd numbers</u></em>.
I slogged through it on my calculator, and it's true.
I never knew this before. It seems to be something valuable
to keep in my tool-box (and cherish always).
2 hr and 45 minutes is = to 165min, so do 140 divided by 165, and you will get 0.8484miles per minute, which is D
Answer: The probablty is is 41221/26 or 0.00669%
Step-by-step explanation:
Drawing tiles from the bag at one time is mathematically equivalent to drawing one tile 4 times inculding the vowel, without replacement.
If we get one of these 4 letters on draw 1, then on draw 2, we'll have 3 possible successful draws out of the 25 tiles left.
This pattern continues down to draw 4. Since each draw is independent, we just multiply the probabilities together: