Explanation:
A process in which water vapor changes into liquid state is known as condensation. As we know that when energy is released in a reaction then it is known as exothermic reaction and when energy is absorbed in a reaction then it is known as endothermic reaction.
As vapors have high energy so, when they change into liquid state then heat energy is released by them. Therefore, condensation is an exothermic reaction.
As per Le Chatelier's principle, any disturbance caused in an equilibrium reaction will tend to shift the equilibrium in a direction away from the disturbance.
So, when there will occur a decrease in temperature then molecules of a gas will come closer to each other. Hence, there will also occur a decrease in vapor pressure of the gas.
We know, Given mass = Molar mass * Number of moles.
A.) <span>1.25 mol CaF</span>₂
Number of moles = 1.25
Molar mass = 78
So, Mass = 78 * 1.25 = 97.5 g
B.) 3.4 mol (NH₄)₂SO₄
Number of moles = 3.4
Molar mass = 132
Mass = 3.4 * 132 = 448.8 g
Hope this helps!
Answer:
801 g
Explanation:
From the question given above, the following data were obtained:
Number of mole of Ba₃(PO₄)₂ = 1.33 moles
Mass of Ba₃(PO₄)₂ =?
Next, we shall determine the molar mass of Ba₃(PO₄)₂. This can be obtained as follow:
Molar mass of Ba₃(PO₄)₂ = (137.3×3) + 2[31 + (4×16)]
= 411.9 + 2[31 + 64]
= 411.9 + 2[95]
= 411.9 + 190
Molar mass of Ba₃(PO₄)₂ = 601.9 g/mol
Finally, we shall determine the mass of Ba₃(PO₄)₂. This can be obtained as follow:
Number of mole of Ba₃(PO₄)₂ = 1.33 moles
Molar mass of Ba₃(PO₄)₂ = 601.9 g/mol
Mass of Ba₃(PO₄)₂ =?
Mole = mass /Molar mass
1.33 = Mass of Ba₃(PO₄)₂ / 601.9
Cross multiply
Mass of Ba₃(PO₄)₂ = 1.33 × 601.9
Mass of Ba₃(PO₄)₂ = 801 g