An electric force exists between the following:
-Two negative objects
-Two positive objects
-A negative object and a positive object
The answer is "iron fusion".
In fact, initially all stars burn hydrogen through nuclear fusion. As they run out of hydrogen, they start to burn the next heavier element, which is helium. The very massive stars continue this cycle, and when they run out of helium they start to burn the heavier elements until reaching iron. This element represents the end of the chain, because nuclear fusion of iron does not release energy, but it absorbs energy. This means that the star can't produce energy anymore and eventually it collapses.
Answer:
Mass and Acceleration
Explanation:
The typical Force equation is:
F = ma
where m = mass, and a=acceleration.
The given question is incomplete. The complete question is as follows.
Two identical balls each have a mass of 35.0 grams and a charge of q = 3.50 \times 10^{-6}C[/tex]. The balls are released from rest when they are separated by a distance of 6.00 cm. What is the speed of each ball when the distance between them has tripled? Use k =
.
Explanation:
According to the conservation of energy, the formula will be as follows.

or, ![\frac{kq_{1}q_{2}}{r_{1}}[1 - \frac{1}{3}] = mv^{2}](https://tex.z-dn.net/?f=%5Cfrac%7Bkq_%7B1%7Dq_%7B2%7D%7D%7Br_%7B1%7D%7D%5B1%20-%20%5Cfrac%7B1%7D%7B3%7D%5D%20%3D%20mv%5E%7B2%7D)
Putting the given values into the above formula as follows.
![\frac{kq_{1}q_{2}}{r_{1}}[1 - \frac{1}{3}] = mv^{2}](https://tex.z-dn.net/?f=%5Cfrac%7Bkq_%7B1%7Dq_%7B2%7D%7D%7Br_%7B1%7D%7D%5B1%20-%20%5Cfrac%7B1%7D%7B3%7D%5D%20%3D%20mv%5E%7B2%7D)
= 23.333
v = 4.83 m/s
Thus, we can conclude that speed of each ball when the distance between them has tripled is 4.83 m/s.
Eugene Cernan was not the last, but he was the most recent.