1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka57 [31]
3 years ago
7

This question is about the alpha particle experiment

Physics
1 answer:
Wewaii [24]3 years ago
4 0
This suggest the the atom has a very small positively charged nucleus in the mass of the atom is concentrated. 
And the electrons revolves around the nucleus in their orbits.
You might be interested in
A student has a small piece of steel.
Simora [160]

Answer:

There are different ways to investigate density. In this required practical activity, it is important to:

record the mass accurately

measure and observe the mass and the volume of the different objects

use appropriate apparatus and methods to measure volume and mass and use that to investigate density

Explanation:

5 0
3 years ago
Careful measurements have been made of Olympic sprinters in the 100-meter dash. A quite realistic model is that the sprinter's v
mihalych1998 [28]

Answer:

a.

\displaystyle a(0 )=8.133\ m/s^2

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=0.52\ m/s^2

b.\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. t=9.9 \ sec

Explanation:

Modeling With Functions

Careful measurements have produced a model of one sprinter's velocity at a given t, and it's is given by

\displaystyle V(t)=a(1-e^{bt})

For Carl Lewis's run at the 1987 World Championships, the values of a and b are

\displaystyle a=11.81\ ,\ b=-0.6887

Please note we changed the value of b to negative to make the model have sense. Thus, the equation for the velocity is

\displaystyle V(t)=11.81(1-e^{-0.6887t})

a. What was Lewis's acceleration at t = 0 s, 2.00 s, and 4.00 s?

To compute the accelerations, we must find the function for a as the derivative of v

\displaystyle a(t)=\frac{dv}{dt}=11.81(0.6887\ e^{0.6887t})

\displaystyle a(t)=8.133547\ e^{-0.6887t}

For t=0

\displaystyle a(0)=8.133547\ e^o

\displaystyle a(0 )=8.133\ m/s^2

For t=2

\displaystyle a(2)=8.133547\ e^{-0.6887\times 2}

\displaystyle a(2)=2.05\ m/s^2

\displaystyle a(4)=8.133547\ e^{-0.6887\times 4}

\displaystyle a(4)=0.52\ m/s^2

b. Find an expression for the distance traveled at time t.

The distance is the integral of the velocity, thus

\displaystyle X(t)=\int v(t)dt \int 11.81(1-e^{-0.6887t})dt=11.81(t+\frac{e^{-0.6887t}}{0.6887})+C

\displaystyle X(t)=11.81(t+1.45201\ e^{-0.6887t})+C

To find the value of C, we set X(0)=0, the sprinter starts from the origin of coordinates

\displaystyle x(0)=0=>11.81\times1.45201+C=0

Solving for C

\displaystyle c=-17.1482\approx -17.15

Now we complete the equation for the distance

\displaystyle X(t)=11.81(t+1.45\ e^{-0.6887t})-17.15

c. Find the time Lewis needed to sprint 100.0 m.

The equation for the distance cannot be solved by algebraic procedures, but we can use approximations until we find a close value.

We are required to find the time at which the distance is 100 m, thus

\displaystyle X(t)=100=>11.81(t+1.45\ e^{-0.6887t})-17.15=100

Rearranging

\displaystyle t+1.45\ e^{-0.6887t}=9.92

We define an auxiliary function f(t) to help us find the value of t.

\displaystyle f(t)=t+1.45\ e^{-0.687t}-9.92

Let's try for t=9 sec

\displaystyle f(9)=9+1.45\ e^{-0.687\times 9}-9.92=-0.92

Now with t=9.9 sec

\displaystyle f(9.9)=9.9+1.45\ e^{-0.687\times 9.9}-9.92=-0.0184

That was a real close guess. One more to be sure for t=10 sec

\displaystyle f(10)=10+1.45\ e^{-0.687\times 10}-9.92=0.081

The change of sign tells us we are close enough to the solution. We choose the time that produces a smaller magnitude for f(t).  

At t\approx 9.9\ sec, \text{ Lewis sprinted 100 m}

7 0
3 years ago
How does increased pressure result in the formation of a mineral?
drek231 [11]
The best answer is 
A) <span>The atoms in the mineral get rearranged

Over time, and under great pressure, the atoms of a substance can become rearranged, forming a new substance. For example, the intense pressure that carbon underground experiences, perhaps in the form of coal, can rearrange the atoms of the substance to create a diamond. </span>
5 0
3 years ago
If the back of the truck is 1.3 m above the ground and the ramp is inclined at 22 ∘ , how much time do the workers have to get t
solong [7]
Refer to the diagram shown below.

Assume that
(a) The piano rolls down on frictionless wheels,
(b) Wind resistance is negligible.

The distance along the ramp is
d = (1.3 m)/sin(22°) = 3.4703 m

The component of the piano's weight along the ramp is
mg sin(22°)
If the acceleration down the ramp is a, then
ma = mg sin(22°)
a = g sin(22°) = (9.8 m/s²) sin(22°) = 3.671 m/s²

The time, t, to travel down the ramp from rest is given by
(3.4703 m) = 0.5*(3.671 m/s²)*(t s)²
t² = 3.4703/1.8355 = 1.8907
t = 1.375 s

Answer: 1.375 s

3 0
3 years ago
Answer the question with step.​
Maru [420]

Answer:

f1/f2 =W1/W2 = 1/3

.0 f2 = 3f1

As ,

1/F= 1/f1 +1/f2

...1/40 = 1/f1 - 1/3f1

f1=> 80/3 cm

... f2 = 2f1 = 3 x 80/3 = 80 cm

7 0
3 years ago
Other questions:
  • Find average speed when time= 27s and total distance is 94m
    9·1 answer
  • Water flows through a horiztonal pipe at a rate of 94 ft3/min. A pressure gauge placed on a 3.3 inch diameter section of the pip
    9·1 answer
  • If you jump off a 7 m diving platform, how long will it take you to hit the
    6·1 answer
  • If the current density in a wire or radius R is given by J-k+5,0F wire? R, what is the current in the wire?
    7·1 answer
  • A ball strikes a wall. It exerts a force of 10 N to the left against the wall and bounces off. What force does the wall exert on
    13·2 answers
  • Work done by friction?
    12·2 answers
  • 4. The earth exerts a gravitational force of 3.5 N on an object. What is the mass of
    11·1 answer
  • An object is placed at a distance 30cm from a thin lenses of power 4 diaptor. Discuss the nature of image
    11·1 answer
  • A 2.47 kg book is dropped from a height of +2.6 m.
    10·1 answer
  • Each of the gears a and b has a mass of 675 g and has a radius of gyration of 40 mm, while gear c has a mass of 3. 6 kg and a ra
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!