Answer: mitochondria
Explanation:Animals and plants are made up of many complex cells called eukaryotic cells. Inside these cells are structures that perform special functions for the cell called organelles. The organelle that is responsible for producing energy for the cell is the mitochondria And cellular respiration.
Explanation:
K.E = 1/2mv²
1/2 x 7.26 x 7.5²= 204.19j
Answer:
Earth's tilted axis causes the seasons. Throughout the year, different parts of Earth receive the Sun's most direct rays. So, when the North Pole tilts toward the Sun, it's summer in the Northern Hemisphere. And when the South Pole tilts toward the Sun, it's winter in the Northern Hemisphere.
Explanation:
Outer hair cells change their axial dimensions in response to electrical stimulation.
What is basilar membrane motion?
Hair cell stereocilia move as a result of the basilar membrane's movement. The tectorial membrane and the hair cells, which are connected to the basilar membrane, move along with it when it moves, and the stereocilia bend in response to the relative motion of the tectorial membrane.
The hair cells that are linked to the auditory nerve fibers are stimulated by the basilar membrane's movement. While the outside hair cells actively affect the basilar membrane's vibrations, the inner hair cells convert hydromechanical vibration into action potentials.
With each sound cycle, the intracellular voltage of the outer hair cells varies, causing them to lengthen and contract. This increases the organ of Corti's vibration, enabling exceptionally high hearing sensitivity and frequency selectivity.
To learn more about tectorial membrane click on the link below:
brainly.com/question/28251599
#SPJ4
Answer:
Increasing the alveolar ventilation rate will increase the partial pressure of oxygen in the alveoli.
Explanation:
Alveolar Ventilation rate is the rate of air flow in the alveoli of the lung during normal breathing. It is measured in milliliters of air per minute (mL/min). The alveolar ventilation rate is an important factor in determining the concentrations (partial pressures) of oxygen and carbon dioxide in the functioning alveoli.
A high rate of alveolar ventilation, would result in a rapid influx of oxygen-rich air and efflux carbon dioxide-filled air from the alveoli. This ultimately results in an increase in the concentration of oxygen and a decrease in the concentration of carbon dioxide within the alveoli.
Effects of alveolar ventilation on partial pressures of alveolar carbon dioxide and oxygen (PACO₂ and PAO₂)
If the alveolar ventilation rate is increased (and carbon dioxide production is unchanged), then the partial pressure of carbon dioxide in the alveoli, PACO₂ will decrease.
If the alveolar ventilation rate increases, then the partial pressure of oxygen in the alveoli, PAO₂ will increase.