Answer:
3
Explanation:
Order of in the mass action law is the coefficient which is raised to the active concentration of the reactants. It is experimentally determined and can be zero, positive negative or fractional.
The order of the whole reaction is the sum of the order of each reactant which is raised to its power in the rate law.
Thus,
For the reaction:-
2Mg+O₂→2MgO
Rate = k[Mg][O₂]²
Order w.r.t. Mg = 1
Order w.r.t. O₂ = 2
<u>So, order of the overall reaction = 1 + 2 = 3</u>
To solve this kinematics formula use the following equation:
Vf = Vi + at
Vf = 0 + (9.81 m/s^2)(3 seconds)
Vf = 29.43 m/s and or about 29.4 m/s of reported to 3 significant figures.
Answer:
= 25 g
Explanation:
Using the formula;
A = A₀ (1/2)^(t/h)
where A is the final amount,
A₀ is the initial amount of the substance,
t is the time and
h is the half-life of the substance,
In this case; the half life of U-238 h is equal to 4.47 billion years.
A = A₀ (1/2)^(t/h)
A = 50 (1/2)^(4.5 / 4.47)
= 24.88
<u> = 25 g</u>
Answer:
Commonly, Overband Magnets are used to separate steel cans and Eddy Current Separators are used to expel and separate aluminium cans; The Aluminium Cans are discarded into general waste, which is then processed.
Explanation:
Answer:
mass 1.25 Liters NH₃(gas) = 0.949 grams (3 sig-figs)
Explanation:
At STP (Standard Temperature-Pressure conditions => 0°C(=273K) and 1atm pressure, 1 mole <u>any</u> gas will occupy 22.4 Liters.
So, given 1.25 Liters ammonia gas at STP, convert to moles then multiply by formula wt. (17g/mole gives mass of NH₃.
moles NH₃(gas) = 1.25L NH₃(gas)/22.4L NH₄(gas)· NH₃(gas)mole⁻¹ = 0.0558 mole NH₃(gas).
Converting to grams NH₃(gas) = 0.0558 mole NH₃(gas) x 17 g·mol⁻¹ = 0.949 grams NH₃(gas).