Answer:
P(A∪B) = 1/3
Step-by-step explanation:
Red Garments = 1 red shirt + 1 red hat + 1 red pairs of pants
Total Red Garments = 3
Green Garments = 1 green shirt + 1 green scarf + 1 green pairs of pants
Total Green Garments = 3
The total number of garments = Total Red Garments + Total Green Garments:
3 + 3 = 6
Let A be the event that he selects a green garment
P(A) = Number of required outcomes/Total number of possible outcomes
P(A) = 3/6
Let B be the event that he chooses a scarf
P(B) = 1/6
The objective here is to determine P(A or B) = P(A∪B)
Using the probability set notation theory:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∩B) = Probability that a green pair of pant is chosen = P(A) - P(B)
= 3/6-1/6
= 2/6
P(A∪B) = 1/2 + 1/6 - 2/6
P(A∪B) = 2/6
P(A∪B) = 1/3
Answer:
Step-by-step explanation:
3 shirts
The frictional force between the tires and the road prevent the car from skidding off the road due to centripetal force.
If the frictional force is less than the centripetal force, the car will skid when it navigates a circular path.
The diagram below shows that when the car travels at tangential velocity, v, on a circular path with radius, r, the centripetal acceleration of v²/ r acts toward the center of the circle.
The resultant centripetal force is (mv²)/r, which should be balanced by the frictional force of μmg, where μ = coefficient of kinetic friction., and mg is the normal reaction on a car with mass, m.
This principle is applied on racing tracks, where the road is inclined away from the circle to give the car an extra restoring force to overcome the centripetal force.
The domain is the space between the end points on the x axis
ex: D:-2(<=)x(<=)4 this means that the domain is any numbers between -2 and 4