The number of moles of silver oxide (I) needed to produce 4 moles of silver is 2 moles
<h3>Stoichiometry </h3>
From the question, we are to determine the number of moles of silver oxide (I) needed to produce 4 moles of silver
First, we will write the balaced chemical equation for the decomposition of silver oxide (I)
2Ag₂O(s) → 4Ag(s) + O₂(g)
This means, 2 moles of silver oxide (I) [Ag₂O] decomposes to give 4 moles of <u>silver </u>and 1 mole of oxygen gas.
From the <em>balanced chemical equation</em>, it is easy to deduce the number of moles of silver oxide (I) that would give 4 moles of silver.
Hence, the number of moles of silver oxide (I) needed to produce 4 moles of silver is 2 moles
Learn more on Stoichiometry here: brainly.com/question/18834543
C. As we know, an atom is made of three parts--protons (+), neutrons (core), and electrons (-) When one of these atoms loses one or more electron(s), it becomes a cation, or a positively charged ion. Inversely, when this atom gains a positively charged ion, [the atom] becomes a negatively charged atom, or an anion. The bond is made through electrostatic attraction, and a bond between these two "halves of a whole", it is known as an ionic bond.
Intermolecular forces of attraction hold the molecules together. These forces determine the physical properties of substances like melting and boiling points. There are five types of intermolecular forces: Hydrogen bonding, dipole-dipole interactions, ionic interactions, ion-dipole interactions and dispersion forces.
Hydrogen bonding is a stronger force of attraction between hydrogen atom and an electronegative atom (F, N, and O). So, water molecules exhibit hydrogen bonding.
In carbon dioxide molecules, although each C=O is polar the molecule as a whole will be non polar due to symmetry. Therefore, the only intermolecular forces in CO2 will be dispersion forces.
Hence, Hydrogen bonding exists between water molecules but not carbon dioxide molecules.
I believe it would be Au^4Cl8