The balanced equation is:

Then proceed with the following equations.

The answer is

.
A. True
The reaction rate depends on the rate constant for the given set of reaction conditions and the concentration
I am assuming that the balanced equation is
2H₂ + O₂ ⇒ 2H₂O
Since the hydrogen is the limiting reagent (meaning if the hydrogen runs out the reaction stops), we need to compare the mole ratio between hydrogen and water.
The mole ratio between H₂ and H₂O is 2:2, or 1:1 (as seen on the coefficients of the balanced equation)
And so for every mole of hydrogen, it will be equal to water. Since hydrogen is 4 moles, 4 moles of water would be created.
So we use the coefficients of H₂ and H₂O in order to answer this question.
Answer:
Therefore it takes 8.0 mins for it to decrease to 0.085 M
Explanation:
First order reaction: The rate of reaction is proportional to the concentration of reactant of power one is called first order reaction.
A→ product
Let the concentration of A = [A]
![\textrm{rate of reaction}=-\frac{d[A]}{dt} =k[A]](https://tex.z-dn.net/?f=%5Ctextrm%7Brate%20of%20reaction%7D%3D-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3Dk%5BA%5D)
![k=\frac{2.303}{t} log\frac{[A_0]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%20log%5Cfrac%7B%5BA_0%5D%7D%7B%5BA%5D%7D)
[A₀] = initial concentration
[A]= final concentration
t= time
k= rate constant
Half life: Half life is time to reduce the concentration of reactant of its half.

Here 


To find the time takes for it to decrease to 0.085 we use the below equation
![k=\frac{2.303}{t} log\frac{[A_0]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%20log%5Cfrac%7B%5BA_0%5D%7D%7B%5BA%5D%7D)
![\Rightarrow t=\frac{2.303}{k} log\frac{[A_0]}{[A]}](https://tex.z-dn.net/?f=%5CRightarrow%20t%3D%5Cfrac%7B2.303%7D%7Bk%7D%20log%5Cfrac%7B%5BA_0%5D%7D%7B%5BA%5D%7D)
Here ,
, [A₀] = 0.13 m and [ A] = 0.085 M


Therefore it takes 8.0 mins for it to decrease to 0.085 M