(2,1) is the solution because its where they both intersect..
No
We know scale factor(k)=y/x
Calculate units as 1 and find k
For left side


Hence its not a copy
just divide it is simple bruh
Answer:
See the proof below.
Step-by-step explanation:
Assuming this complete question: "For each given p, let Z have a binomial distribution with parameters p and N. Suppose that N is itself binomially distributed with parameters q and M. Formulate Z as a random sum and show that Z has a binomial distribution with parameters pq and M."
Solution to the problem
For this case we can assume that we have N independent variables
with the following distribution:
bernoulli on this case with probability of success p, and all the N variables are independent distributed. We can define the random variable Z like this:
From the info given we know that
We need to proof that
by the definition of binomial random variable then we need to show that:


The deduction is based on the definition of independent random variables, we can do this:

And for the variance of Z we can do this:
![Var(Z)_ = E(N) Var(X) + Var (N) [E(X)]^2](https://tex.z-dn.net/?f=%20Var%28Z%29_%20%3D%20E%28N%29%20Var%28X%29%20%2B%20Var%20%28N%29%20%5BE%28X%29%5D%5E2%20)
![Var(Z) =Mpq [p(1-p)] + Mq(1-q) p^2](https://tex.z-dn.net/?f=%20Var%28Z%29%20%3DMpq%20%5Bp%281-p%29%5D%20%2B%20Mq%281-q%29%20p%5E2)
And if we take common factor
we got:
![Var(Z) =Mpq [(1-p) + (1-q)p]= Mpq[1-p +p-pq]= Mpq[1-pq]](https://tex.z-dn.net/?f=%20Var%28Z%29%20%3DMpq%20%5B%281-p%29%20%2B%20%281-q%29p%5D%3D%20Mpq%5B1-p%20%2Bp-pq%5D%3D%20Mpq%5B1-pq%5D)
And as we can see then we can conclude that 
Answer:
x= -3
Step-by-step explanation:
Distribute 4(2-4x) which leaves you with 8-16x-3x=65
combine the like terms which leaves you with 8-19x=65
subtract 8 from both sides 8-19x-8=65-8 which leaves you with -19x=57
lastly divide -19 from both sides which leaves you with x= -3