Answer:
Eight and one hundred thirty-four thousandths
Step-by-step explanation:
Thats how u write it in word form! i hope this helped :)
Answer:
504
Step-by-step explanation:
I think the correct question is like:The common ratio in a geometric series is 0.50 ( point 5) and the first term is 256.
Find the sum of the first 6 terms in the series.
If it's right, then
Sₙ = (a₁ * (1 - rⁿ)) / (1 - r)
S₆ = (256 * ( 1 - 0.5⁶)) / (1 - 0.5) = (256 * 0.984375) / 0.5 = 504
<h3>
Answer: 21x+14 (choice A)</h3>
Explanation:
Use the distribution rule to multiply the outer 7 by each term inside
- 7 times 3x = 21x
- 7 times 2 = 14
We go from 7(3x+2) to 21x+14
Answer:

Step-by-step explanation:

All the terms in this polynomial are divisible by 3. Factor 3 out of this polynomial:

Now, factor inside the parentheses by grouping:

We knew to split the +2x up into -1x and 3x because -1 and 3 multiply to get -3, which is the last value in the polynomial.

Therefore, the final factored polynomial is
.
Answer: The required solution is

Step-by-step explanation: We are given to solve the following differential equation :

Let us consider that
be an auxiliary solution of equation (i).
Then, we have

Substituting these values in equation (i), we get
![m^2e^{mt}+10me^{mt}+25e^{mt}=0\\\\\Rightarrow (m^2+10y+25)e^{mt}=0\\\\\Rightarrow m^2+10m+25=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{since }e^{mt}\neq0]\\\\\Rightarrow m^2+2\times m\times5+5^2=0\\\\\Rightarrow (m+5)^2=0\\\\\Rightarrow m=-5,-5.](https://tex.z-dn.net/?f=m%5E2e%5E%7Bmt%7D%2B10me%5E%7Bmt%7D%2B25e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%20%28m%5E2%2B10y%2B25%29e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%20m%5E2%2B10m%2B25%3D0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%5B%5Ctextup%7Bsince%20%7De%5E%7Bmt%7D%5Cneq0%5D%5C%5C%5C%5C%5CRightarrow%20m%5E2%2B2%5Ctimes%20m%5Ctimes5%2B5%5E2%3D0%5C%5C%5C%5C%5CRightarrow%20%28m%2B5%29%5E2%3D0%5C%5C%5C%5C%5CRightarrow%20m%3D-5%2C-5.)
So, the general solution of the given equation is

Differentiating with respect to t, we get

According to the given conditions, we have

and

Thus, the required solution is
