You can see what is the electron configuration by looking at the layout of the periodic tables. the first shell will have a max of 2 electrons on it, once the first one is filled up a second is added with a max of 8 electrons on it and so on with the 8 as a max. so He, and H will only have them on the first shell but every horizontal row is a new valence or outer shell. so lets say for carbon look at the number in the upper left corner of the box will tell you the total number of electrons you will need. so start off with the first two electrons on the first shell. now you know that carbon needs 6 electrons in total, since you can only have a max of 2 on the first shell you need a second one so on the second one you will have to have the remaining 4. now elements are most stable when they have a full valence shell becuase those are the only electrons that will react with others. so if carbon has 4 it wants to either gain or lose 4 electrons so you could say that it would bond with 4H since each H will donate 1 electron to the C valence shell making all the H and C stable. CH4(methane)
The answer would be 46.482 because you multiply 18.3 by 2.54 because for every inch you get 2.54 centimeters
Answer:
A
Explanation:
The equation of power is defined as Power = Workdone/Time Taken
And workdone = Force x Distance so using these equations we get they workdone is, 200x 10 = 2000Nm.
Dividing workdone with time will yield power, 2000 ÷ 8 = 250 Nm/s = 250W.
Humid air has higher pressure because of the heaviness of the water
Refer to the figure below.
R = resistance.
Case 1:
The voltage source is V₁ and the current is 10 mA. Therefore
V₁ = (10 mA)R
Case 2:
The voltage source is V₂ and the current is 8 mA. Therefore
V₂ = (8 mA)R
Case 3:
The voltage across the resistance is V₁ - V₂. Therefore the current I is given by
V₁ - V₂ = IR
10R - 8R = (I mA)R
2 = I
The current is 2 mA.
Answer: 2 mA