Answer:
The power for circular shaft is 7.315 hp and tubular shaft is 6.667 hp
Explanation:
<u>Polar moment of Inertia</u>

       = 0.14374 in 4
<u>Maximum sustainable torque on the solid circular shaft</u>

          =
          = 3658.836 lb.in
          = 
 lb.ft
          = 304.9 lb.ft
<u>Maximum sustainable torque on the tubular shaft</u>

           = 
           = 3334.8 lb.in 
           = 
 lb.ft
           = 277.9 lb.ft
<u>Maximum sustainable power in the solid circular shaft</u>

           = 
           = 4023.061 lb. ft/s
           = 
 hp
           = 7.315 hp
<u>Maximum sustainable power in the tubular shaft</u>

             = 
             = 3666.804 lb.ft /s 
             = 
hp
             = 6.667 hp
 
        
             
        
        
        
V = I * R
Where V is the voltage, I is the current and R is the resistance. Using Ohm's law, you require resistance to find the current through the wire. Technically, if the wire has a resistance of 0, you will get infinite current. But this isn't possible. Maybe the negligible resistance refers to the battery's internal resistance - not the wire's resistance. 
        
             
        
        
        
bvcdbcvfdnbgfbjdgfhdgfjghfjhvjbczdfsghdfshjdgfhdftgh
 
        
             
        
        
        
Answer:
7.74m/s
Explanation:
Mass = 35.9g = 0.0359kg
A = 39.5cm = 0.395m
K = 18.4N/m
At equilibrium position, there's total conservation of energy. 
Total energy = kinetic energy + potential energy
Total Energy = K.E + P.E
½KA² = ½mv² + ½kx²
½KA² = ½(mv² + kx²)
KA² = mv² + kx²
Collect like terms
KA² - Kx² = mv²
K(A² - x²) = mv²
V² = k/m (A² - x²)
V = √(K/m (A² - x²) )
note x = ½A
V = √(k/m (A² - (½A)²)
V = √(k/m (A² - A²/4))
Resolve the fraction between A.
V = √(¾. K/m. A² )
V = √(¾ * (18.4/0.0359)*(0.395)²)
V = √(0.75 * 512.53 * 0.156)
V = √(59.966)
V = 7.74m/s
 
        
                    
             
        
        
        
Not sure.can you give me a clue?