Answer:
The first digit of the quotient should be placed at the leftmost place of the places of the all the digits in the quotient.This is so from the basic rule of division.
Step-by-step explanation:
The quotient is given by,
[where [x] is the greatest integer function on x]
= [322.6]
= 322
and the remainder is given by,

= 9
So, the first digit of the quotient should be placed at the leftmost place of the places of the all the digits in the quotient and this is so from the very basic rule of division.
The ration of boy campers to total campers is 8:15, and the ratio of girl campers to total campers is 7:15. Using this information, we can answer this question by setting up proportions.
<u>For boys:</u>

<em>*Cross multiply*</em>
15x=1560
<em>*Divide both sides by 15*</em>
x=104
There are 169 boy campers.
<u>For girls:</u>

<em>*Cross multiply*</em>
15x=1365
91=x
There are 91 girl campers.
Hope this helps!!
Answers:
- (a) Independent
- (b) Dependent
- (c) Dependent
- (d) Independent
========================================================
Explanation:
If events A and B are independent, then the two following equations must both be true
- P(A | B) = P(A)
- P(B | A) = P(B)
This is because the conditional probability P(A|B) means "P(A) when B has happened". If B were to happen, then P(A) must be the same as before. In other words, event B does not affect A, and vice versa.
For part (a), we have P(B) = 1/4 and P(B|A) = 1/4 showing that P(B|A) = P(B) is true, and therefore we can say the events are independent. We don't need the info that P(A) = 1/8.
------------------------
Unlike part (a), part (b) has the answer "dependent" because P(A) = 1/8 and P(A | B) = 1/3 differ in value. Event A starts off at probability 1/8, but then event B occurring means P(A) gets increased to 1/3. The prior knowledge about B changes the chances of A. The P(B) = 1/5 is unneeded.
------------------------
If A and B were independent, then,
P(A and B) = P(A)*P(B)
However,
P(A)*P(B) = (1/4)*(1/5) = 1/20
which is not the same as P(A and B) = 1/6. Therefore the two events are dependent.
------------------------
Refer back to part (a)
P(A) = 1/4 and P(A|B) = 1/4 are identical in value, so P(A|B) = P(A) which leads to the events being independent. Whether we know event B happened or not, it does not affect the outcome of event A. P(B) = 1/9 is unneeded.
Answer:D. -4
Step-by-step explanation:
If the relationship is proportional, what is the missing value from the table?
X Y
-3 -1
-12 ?
-30 -10
<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>1</em><em>4</em><em>7</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>