Answer:
"caffeine" both products contain this compound
Answer:
B) electrons
Explanation:
When charge is transferred by friction, induction or conduction, the charge carriers are the electrons.
In fact, protons and neutrons are found within the nucleus of the atoms, so they are tightly bound and they cannot be easily gained/given off. On the contrary, electrons are found in the electron clouds around the nucleus, so atoms can more easily gain/lose electrons, which become free and can be passed by an object to another.
The three methods of charging are:
- Friction: by rubbing two objects together, electrons may be transferred from one to another
- Induction: by moving a charged object closer to a neutral object, opposite charges in the neutral object migrate towards the opposite ends of the object, and if the object is connected to the ground, the charges of one polarity leave the object, leaving the object charged
- Conduction: by putting a charged object in contact with a neutral object, electrons can be transferred from the charged object to the neutral one
Answer:
laws of motion relate an object’s motion to the forces acting on it. In the first law, an object will not change its motion unless a force acts on it. In the second law, the force on an object is equal to its mass times its acceleration. In the third law, when two objects interact, they apply forces to each other of equal magnitude and opposite direction.
Answer:
Galileo Galilei
Explanation:
although Galileo was not the scientist who invented the telescope, he was the first to use it to observe celestial objects. he used the telescope in 1609. his discovery included more accurate information about the moon, the sun and some of the planets.
Hello. You did not present the combinations the question refers to, which makes it impossible for this question to be answered accurately. However, I will try to help you in the best possible way.
To present the total force you must use the following formula: Mass x Acceleration.
To calculate the total mass, you must use the formula: Force / acceleration.
To calculate the acceleration you must use the formula: Force / mass.