Answer:
C The launcher will fall off the platform and land D/2 to the left of the platform because the launcher is twice the mass of the ball.
Explanation:
The figure is missing: you can find it in attachment.
We can apply the law of conservation of momentum to check that the launcher will leave the platform with a speed which is half the speed of the ball. In fact, the total initial momentum is zero:

while the total final momentum is:

where
is the mass of the launcher
is the mass of the ball
is the velocity of the launcher
is the velocity of the ball
Since the total momentum must be conserved,
, so

Therefore we find

which means that the launcher leaves the platform with a velocity which is half that of the ball, and in the opposite direction (to the left).
Since the distance covered by both the ball and the launcher only depends on their horizontal velocity, this also means that the launcher will cover half the distance covered by the ball before reaching the ground: therefore, since the ball covers a distance of D, the launcher will cover a distance of D/2.
Rate of speed, probs is the answer
There is a horizontal abduction and horizontal adduction in the
transverse plane that is imaginary bisector that divides the body into two halves
upper or top and lower or bottom halves.
<span>Horizontal abduction involves the movement of the arm or thigh from
a medial or anterior position to a lateral position and in horizontal
adduction, the movement is reverse that is from lateral position to anterior
position.</span>
Answer:
8.64 x 10^7 J
Explanation:
Intensity of sunlight, I = 1000 W/m^2
Length of panel, L = 6 m
Width of panel, W = 4 m
Area of the panel, A = L x W = 6 x 4 = 24 m^2
time, t = 1 hour = 3600 second
Energy = Intensity x area of panel x time
E = 1000 x 24 x 3600 = 8.64 x 10^7 J
If there are no windows, then the illumination in the room depends
only on the room and what's in it, not on anything outside.
The time of day has no effect. The other things all do.