Option C is the correct answer
When the winch is pulling it up it's first hill, it is losing it's energy to give it to the coaster. It starts gaining energy because its height. Then when it goes down the hill, gravity kicks in and the potential energy turns into kinetic energy.
Answer:
![\boxed{\sf Tension \ in \ the \ string \ (T) = 3 \ kN}](https://tex.z-dn.net/?f=%20%5Cboxed%7B%5Csf%20Tension%20%5C%20in%20%5C%20the%20%5C%20string%20%5C%20%28T%29%20%3D%203%20%5C%20kN%7D%20)
Given:
Mass (m) = 3.0 kg
Uniform speed (v) = 20 m/s
Length of string (r) = 40 cm = 0.4 m
To Find:
Tension in the string (T)
Explanation:
Tension (T) is the string will be equal to centripetal force (
).
![\boxed{ \bold{ T = F_c = \frac{m {v}^{2} }{r} }}](https://tex.z-dn.net/?f=%20%5Cboxed%7B%20%5Cbold%7B%20T%20%3D%20F_c%20%20%3D%20%20%5Cfrac%7Bm%20%7Bv%7D%5E%7B2%7D%20%7D%7Br%7D%20%7D%7D)
Substituting value of m, v & r in the equation:
![\sf \implies T = \frac{3 \times {20}^{2} }{0.4} \\ \\ \sf \implies T = \frac{3 \times 400}{0.4} \\ \\ \sf \implies T =3 \times 1000 \\ \\ \sf \implies T =3000 \: N \\ \\ \sf \implies T =3 \: kN](https://tex.z-dn.net/?f=%20%5Csf%20%5Cimplies%20T%20%3D%20%20%5Cfrac%7B3%20%5Ctimes%20%20%7B20%7D%5E%7B2%7D%20%7D%7B0.4%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Csf%20%5Cimplies%20T%20%3D%20%5Cfrac%7B3%20%5Ctimes%20400%7D%7B0.4%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Csf%20%5Cimplies%20T%20%3D3%20%5Ctimes%201000%20%5C%5C%20%20%5C%5C%20%20%5Csf%20%5Cimplies%20T%20%3D3000%20%5C%3A%20N%20%5C%5C%20%20%5C%5C%20%5Csf%20%5Cimplies%20T%20%3D3%20%5C%3A%20kN)
![\therefore](https://tex.z-dn.net/?f=%20%5Ctherefore)
Tension in the string (T) = 3 kN
From my experience, I would say it is true.