1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darya [45]
3 years ago
12

A 1,100 kg car comes uniformly to a stop. If the vehicle is accelerating at -1.2 m/s2 , which force is closest to the net force

acting on the vehicle?
Answer choices:
A. -9600N
B. -1300N
C. -900N
D. -94N
Physics
2 answers:
larisa [96]3 years ago
8 0

Answer:

D

Explanation:

boyakko [2]3 years ago
7 0

Answer:

Explanation:

D

You might be interested in
What is the order of magnitude of the distance of Sun to nearest star in meters?
neonofarm [45]

Answer:

Approximating the Milky Way as a disk and using the density in the solar neighborhood, there are about 100 billion stars in the Milky Way.

Explanation:

Since we are making an order of magnitude estimate, we will make a series of simplifying assumptions to get an answer that is roughly right.

Let's model the Milky Way galaxy as a disk.

The volume of a disk is:

V

=

π

⋅

r

2

⋅

h

Plugging in our numbers (and assuming that

π

≈

3

)

V

=

π

⋅

(

10

21

m

)

2

⋅

(

10

19

m

)

V

=

3

×

10

61

m

3

Is the approximate volume of the Milky Way.

Now, all we need to do is find how many stars per cubic meter (

ρ

) are in the Milky Way and we can find the total number of stars.

Let's look at the neighborhood around the Sun. We know that in a sphere with a radius of

4

×

10

16

m there is exactly one star (the Sun), after that you hit other stars. We can use that to estimate a rough density for the Milky Way.

ρ

=

n

V

Using the volume of a sphere

V

=

4

3

π

r

3

ρ

=

1

4

3

π

(

4

×

10

16

m

)

3

ρ

=

1

256

10

−

48

stars /

m

3

Going back to the density equation:

ρ

=

n

V

n

=

ρ

V

Plugging in the density of the solar neighborhood and the volume of the Milky Way:

n

=

(

1

256

10

−

48

m

−

3

)

⋅

(

3

×

10

61

m

3

)

n

=

3

256

10

13

n

=

1

×

10

11

stars (or 100 billion stars)

Is this reasonable? Other estimates say that there are are 100-400 billion stars in the Milky Way. This is exactly what we found.

4 0
3 years ago
Read 2 more answers
What causes atoms to bond together<br> ?!?
lisov135 [29]

Answer:

electrostatic attraction

Explanation:

Atoms form chemical bonds with other atoms when there's an electrostatic attraction between them. This attraction results from the properties and characteristics of the atoms' outermost electrons, which are known as valence electrons.

7 0
3 years ago
Read 2 more answers
What is the closeness of measured value to an accepted value?
kotykmax [81]
Accuracy?

filler text filler text filler text
3 0
3 years ago
billy bob joe's truck has a mass of 3,800 g and an acceleration of 4.5 m/s^2. what is the force of the truck? (you will have to
maria [59]

Answer:

<h2>17.1 N</h2>

Explanation:

The force acting on an object given it's mass and acceleration can be found by using the formula

force = mass × acceleration

From the question

3800 g = 3.8 kg

We have

force = 3.8 × 4.5

We have the final answer as

<h3>17.1 N</h3>

Hope this helps you

4 0
3 years ago
A 6.99-g bullet is moving horizontally with a velocity of +341 m/s, where the sign + indicates that it is moving to the right (s
Ratling [72]

Answer:

a). 1.218 m/s

b). R=2.8^{-3}

Explanation:

m_{bullet}=6.99g*\frac{1kg}{1000g}=6.99x10^{-3}kg

v_{bullet}=341\frac{m}{s}

Momentum of the motion the first part of the motion have a momentum that is:

P_{1}=m_{bullet}*v_{bullet}

P_{1}=6.99x10^{-3}kg*341\frac{m}{s} \\P_{1}=2.3529

The final momentum is the motion before the action so:

a).

P_{2}=m_{b1}*v_{fbullet}+(m_{b2}+m_{bullet})*v_{f}}

P_{2}=1.202 kg*0.554\frac{m}{s}+(1.523kg+6.99x10^{-3}kg)*v_{f}

P_{1}=P_{2}

2.529=0.665+(1.5299)*v_{f}\\v_{f}=\frac{1.864}{1.5299}\\v_{f}=1.218 \frac{m}{s}

b).

kinetic energy

K=\frac{1}{2}*m*(v)^{2}

Kinetic energy after

Ka=\frac{1}{2}*1.202*(0.554)^{2}+\frac{1}{2}*1.523*(1.218)^{2}\\Ka=1.142 J

Kinetic energy before

Kb=\frac{1}{2}*mb*(vf)^{2}\\Kb=\frac{1}{2}*6.99x10^{-3}kg*(341)^{2}\\Kb=406.4J

Ratio =\frac{Ka}{Kb}

R=\frac{1.14}{406.4}\\R=2.8x10^{-3}

3 0
4 years ago
Other questions:
  • Robert is hosting a backyard barbecue. He uses a charcoal fire to grill the chicken. The chicken cooks, but it never touches the
    11·2 answers
  • After three shuttle accidents in three months, one of which resulted in a critical injury to a driver, Get Around Shuttle driver
    12·1 answer
  • A mountain climber, in the process of crossing between two cliffs by a rope, pauses to rest. She weighs 555 N. As the drawing sh
    7·1 answer
  • What tension must a 50.0 cm length of string support in order to whirl an attached 1,000.0 g stone in a circular path at 5.00 m/
    8·1 answer
  • Which observation supports a model of the nature of light in which light acts as a wave?
    13·2 answers
  • Engineers are investigating the properties of a material for use as a wrapping product. Three identical
    11·1 answer
  • Which best explains how a heat pump can heat a room?
    15·2 answers
  • If a ball is dropped off a tall building and accelerates at 9.8 m/s^2 until reaching the ground at a speed of 55 m/s, how long w
    7·1 answer
  • A car travels 6 m north for 2 seconds and 8 m south for 5 seconds. What is the car's
    14·2 answers
  • An object is 10 cm away from a plane mirror. How far is the object from its image.​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!