Answer:
There's a video called Drawing Position vs Time Graphs made by MrDGenova that may help you, it's only three minutes long.
Explanation:
Hope that helps, if not, you could tell me what you don't understand and I could try explaining it in further detail.
Achieve a full outer shell
Answer:
c. dioptre that's the answer.
Point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
On the graph, A is the point where magnitude of the acceleration of the particle is greatest as compared to other positions on the graph because the height of point A is the largest as compared to other points of the graph.
The graph shows at which point acceleration of an object is higher and lower so we can conclude that point A has the largest magnitude of acceleration as compared to other points on the position verses time graph.
Learn more about acceleration here: brainly.com/question/933224
Learn more: brainly.com/question/25887663
Answer:
60N
Explanation:
in this case the minimum amount of force required must be equal to the friction Force. i.e <u>Newton</u><u>'s</u><u> </u><u>first</u><u> </u><u>law</u><u> of</u><u> </u><u>mot</u><u>ion</u><u>.</u>
therefore the maximum amount of frictional force is equal to the applied force which is 60N.
because of the net force acting on the object is zero the object is in constant motion . i.e equal and opposite force must be applied so that the object is in constant velocity therefore the total frictional force must be 60N