Answer:

Explanation:
The torque applied by a force can be calculated as

where
F is the magnitude of the force
d is the length of the arm
is the angle between the direction of the force and the arm
In this problem, we have
F = 15 N
d = 2.0 m

Substituting into the equation, we find

Answer:
Explanation:
initial velocity, u = 0
final velocity, v = 80 ft/s
acceleration, a = 150 ft/s²
Let the time taken is t.
v = u + at
80 = 0 + 150 x t
t = 0.53 second
Answer:
Work out = 28.27 kJ/kg
Explanation:
For R-134a, from the saturated tables at 800 kPa, we get
= 171.82 kJ/kg
Therefore, at saturation pressure 140 kPa, saturation temperature is
= -18.77°C = 254.23 K
At saturation pressure 800 kPa, the saturation temperature is
= 31.31°C = 304.31 K
Now heat rejected will be same as enthalpy during vaporization since heat is rejected from saturated vapour state to saturated liquid state.
Thus,
=
= 171.82 kJ/kg
We know COP of heat pump
COP = 
= 
= 6.076
Therefore, Work out put, W = 
= 171.82 / 6.076
= 28.27 kJ/kg
Answer:
Gauss law states that the electric flux is defined as the electric field multiplied by the area of the surface in a plane perpendicular to the field.
Explanation:
Mathematically,
Φ=Q ϵo
Where;
Q is enclosed charge
ϵo is the permittivity of the free space
According to Gauss law, which states that the electric flux is defined as the electric field multiplied by the area of the surface in a plane perpendicular to the field.
Φ=Q ϵo
Where;
Q is enclosed charge
ϵo is the permittivity of the free space
If the cube is transformed into a sphere the total flux in the electric field remains unchanged or remains the same. This is because the gaussian law does not postulate that electric flux is dependent on the object in a plane. Hence, the transformation of the cube to a sphere does not affect the electric flux generated in the field.
To learn more about how the total flux through a sphere relates to the surface change, click brainly.com/question/4362789
#SPJ4
The term you need to know is equilibrium. Technically it means that heat gained = heat lost. Normally in beginning chemistry classes the evidence for this condition is a stable temperature.