<span>553 ohms
The Capacitive reactance of a capacitor is dependent upon the frequency. The lower the frequency, the higher the reactance, the higher the frequency, the lower the reactance. The equation is
Xc = 1/(2*pi*f*C)
where
Xc = Reactance in ohms
pi = 3.1415926535.....
f = frequency in hertz.
C = capacitance in farads.
I'm assuming that the voltage and resistor mentioned in the question are for later parts that are not mentioned in this question. Reason is that they have no effect on the reactance, but would have an effect if a question about current draw is made in a later part. With that said, let's calculate the reactance.
The 120 rad/s frequency is better known as 60 Hz.
Substitute known values into the formula.
Xc = 1/(2*pi* 60 * 0.00000480)
Xc = 1/0.001809557
Xc = 552.6213302
Rounding to 3 significant figures gives 553 ohms.</span>
D is the answer because of the solar phonominals
<h2>
Answer: Pulsars</h2>
A <u>pulsar</u> is a neutron star that emits very intense electromagnetic radiation at short and periodic intervals ( rotating really fast) due to its intense magnetic field that induces this emission.
Nevertheless, it is important to note that all pulsars are neutron stars, but not all neutron stars are pulsars.
Let's clarify:
A neutron star, is the name given to the remains of a supernova. In itself it is the result of the gravitational collapse of a massive supergiant star after exhausting the fuel in its core.
Neutron stars have a small size for their very high density and they rotate at a huge speed.
However, the way to know that a pulsar is a neutron star is because of its high rotating speed.
Answer:
f1 = -3.50 m
Explanation:
For a nearsighted person an object at infinity must be made to appear to be at his far point which is 3.50 m away. The image of an object at infinity must be formed on the same side of the lens as the object.
∴ v = -3.5 m
Using mirror formula,
i/f1 = 1/v + 1/u
Where f1 = focal length of the contact lens, v = image distance = -3.5 m, u = object distance = at infinity(∞) = 1/0
∴ 1/f1 = (1/-3.5) + 1/infinity
Note that, 1/infinity = 1/(1/0) = 0/1 =0.
∴ 1/f1 = 1/(-3.5) + 0
1/f1 = 1/(-3.5)
Solving the equation by finding the inverse of both side of the equation.
∴ f1 = -3.50 m
Therefore a converging lens of focal length f1 = -3.50 m
would be needed by the person to see an object at infinity clearly
Lets assume that s is the speed of the slower train and f is the speed of the faster train.
s = f - 16
f = 150 / t
s = 170 / ( t+2 )
-----------------------
170 / ( t+2 ) = 150 / t - 16 / t * ( t + 2 )
170 t = 150 * ( t + 2 ) - 16 t * ( t + 2 )
170 t = 150 t + 300 - 16 t² - 32 t
16 f² + 52 t - 300 = 0 / : 4 ( We will divide both sides of the equation by 4 )
4 t² + 13 t - 75 = 0
t 1/2 = ( -13 + √(169 + 1200 ) )/ 8
t = ( - 13 + 37 ) / 8 = 24 / 8 = 3
t = 3 h
s = 170 : ( 3 + 2 ) = 170 : 5 = 34 mph
Answer: The speed of the slower train is 34 mph.