Answer: The ice cube would float on top of the water and the rock would sink to the bottom.
Explanation: The ice cube has a smaller density than the rock which allows the ice cube to float but makes the rock sink to the bottom of the glass of water.
Work = Force times Distance
W = Fd
Given W = 750J, F = 125N;
750 = 125d
Solving for d:
d = 750/125
d = 6
The box moved a distance of 6 meters.
Answer:
C) The function F(x) for 0 < x < 5, the block's initial velocity, and the value of Fr.
Explanation:
Yo want to prove the following equation:

That is, the net force exerted on an object is equal to the change in the kinetic energy of the object.
The previous equation is also equal to:
(1)
m: mass of the block
vf: final velocity
v_o: initial velocity
Ff: friction force
F(x): Force
x: distance
You know the values of vf, m and x.
In order to prove the equation (1) it is necessary that you have C The function F(x) for 0 < x < 5, the block's initial velocity, and the value of F. Thus you can calculate experimentally both sides of the equation.
Answer:
350J
Explanation:
Given parameters:
Weight of bag = 20N
Distance moved horizontally = 35m
Force applied = 10N
Unknown:
Work done on the bag = ?
Solution:
Work done is the force applied to move a body through given distance.
Work done = Force applied x distance
So;
Work done = 10 x 35 = 350J
Answer:
16 cm
Explanation:
Given that,
The object begins from 0 and moves 3cm towards left side followed by 7 cm towards the right and then, 6 cm towards the left side.
Let the x-axis to be the +ve and on the right side and -ve on the left
Thus, displacement would be:
= 0 -3 + 7 -6
= -2 cm
This implies that the object displaces 2cm towards the left.
While the total distance covered by the object equal to,
= 0cm + 3cm + 7cm + 6cm
= 16 cm
Thus, <u>16 cm</u> is the total distance.