what are the answer choices?
Answer:
pplications of Pascal’s Law
Hydraulic Lift: The image you saw at the beginning of this article is a simple line diagram of a hydraulic lift. This is...
The construction is such that a narrow cylinder (in this case A) is connected to a wider cylinder (in this case B). They...
Pressure applied at piston A is transmitted equally to piston B without diminishing, on use of an incompressible fluid.
Explanation:
Answer:
1.6 m
Explanation:
Given that the launch velocity of a toy car launcher is determined to be 5 m/s. If the car is to be launched from a height of 0.5 m.
The time for landing should be calculated by using the second equation of motion formula
h = Ut + 1/2gt^2
Let U = 0
0.5 = 1/2 × 9.8 × t^2
0.5 = 4.9t^2
t^2 = 0.5 / 4.9
t^2 = 0.102
t = 0.32 s
The target should be placed so that the toy car lands on it at:
Distance = 5 × 0.32
distance = 1.597 m
Distance = 1.6 m
Therefore, the target should be placed so that the toy car lands on it 1.6 metres away.
Answer:

Explanation:
given data:
density of water \rho = 1 gm/cm^3 = 1000 kg/m^3
height of water = 20 cm =0.2 m
Pressure p = 1.01300*10^5 Pa
pressure at bottom



= 1.01300*10^5 - 1000*0.2*9.8
= 99340 Pa
h_[fluid} = 0.307m


Answer:
attractive toward +x axis is the net horizontal force
attractive toward +y axis is the net vertical force
Explanation:
Given:
- charge at origin,

- magnitude of second charge,

- magnitude of third charge,

- position of second charge,

- position of third charge,

<u>Now the distance between the charge at at origin and the second charge:</u>



<u>Now the distance between the charge at at origin and the third charge:</u>



<u>Now the force due to second charge:</u>


attractive towards +y
<u>Now the force due to third charge:</u>


attractive
<u>Now the its horizontal component:</u>

attractive toward +x axis
<u>Now the its vertical component:</u>

upwards attractive
Now the net vertical force:


