The final volume of the gas is 238.9 mL
Explanation:
We can solve this problem by using Charle's law, which states that for a gas kept at constant pressure, the volume of the gas (V) is proportional to its absolute temperature (T):

Which can be also re-written as

where
are the initial and final volumes of the gas
are the initial and final temperature of the gas
For the gas in the balloon in this problem, we have:
is the initial volume
is the initial absolute temperature
is the final volume
is the final temperature
Solving for
,

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
But we do not know whether the force is pushing or pulling (the same direction (both forces are parallel) but: .........[ ]<-F-- or .......[ ]--F-->). I suppose the correct answer is B
wavelength of the EM wave produced by your iclicker is 0.33 m.
<h3>What makes an EM wave?</h3>
- When an electric field (illustrated in red arrows) combines with a magnetic field, electromagnetic waves are generated (which is shown in blue arrows). An electromagnetic wave's magnetic and electric fields are perpendicular to each other and to the wave's direction.
- A changing magnetic field causes a changing electric field, and vice versa—the two are inextricably related. Electromagnetic waves are created by changing fields. Electromagnetic waves, unlike mechanical waves, do not require a medium to propagate.
The clicker emits EM (electromagnetic) wave which travels at the speed of light, that is
v = 3 x 10⁸ m/s
The frequency is
f = 900mHz = 9 x 10⁸ Hz
velocity = frequency * wavelength, the wavelength, λ, is given by
fλ = v
λ = v/f
= (3 x 10⁸ m/s) / (9 x 10⁸ 1/s)
= 1/3 m = 0.333 m
To learn more about electromagnetic waves refer,
brainly.com/question/25847009
#SPJ1
Answer:
691200 J
Explanation:
From specific heat capacity,
ΔQ = cmΔt.................. Equation 1
Where ΔQ = increase in thermal energy, c = specific heat capacity of the body, m = mass of the man, Δt = rise in temperature.
Given: c = 3.6 kJ/kg.°C = 3600 J/kg.°C, m = 96 kg, Δt = 39-37 = 2 °C.
Substitute into equation 1
ΔQ = 3600×96×2
ΔQ = 691200 J.
Hence the change in the thermal energy of the body = 691200 J