Answer:
Since the momentum of the body remains constant ( conserved) the trolley slows down (its velocity reduces) since its mass increases.
Answer:
Explanation:
Let the velocity of projectile be v and angle of throw be θ.
The projectile takes 5 s to touch the ground during which period it falls vertically by 100 m
considering its vertical displacement
h = - ut +1/2 g t²
100 = - vsinθ x 5 + .5 x 9.8 x 5²
5vsinθ = 222.5
vsinθ = 44.5
It covers 160 horizontally in 5 s
vcosθ x 5 = 160
v cosθ = 32
squaring and adding
v²sin²θ +v² cos²θ = 44.4² + 32²
v² = 1971.36 + 1024
v = 54.73 m /s
It seems that you have missed the necessary options for us to answer this question, but anyway, here is the answer. The type of machine that a wire cutter pliers is classified is a simple machine. When we say simple machine, this is the type of machine that is considered basic wherein you need to apply force for it to function. Hope this helps.
To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as,
Here,
= Frequency of Source
= Speed of sound
f = Frequency heard before slowing down
f' = Frequency heard after slowing down
v = Speed of the train before slowing down
So if the speed of the train after slowing down will be v/2, we can do a system equation of 2x2 at the two moments, then,
The first equation is,
Now the second expression will be,
Dividing the two expression we have,
Solving for v, we have,
Therefore the speed of the train before and after slowing down is 22.12m/s
Answer:
D
Explanation:
6CO² + 6H²O > sunlight, chlorophyll, enzymes > C⁶H¹²O⁶ + 6O²