I feel like the answer is B, good luck!
If you can provide the reaction you are looking at, then we can provide a more satisfactory answer.
If the forward reaction is exothermic, then reducing the temperature where the reaction occurs will shift the equilibrium towards the right. This is because exothermic reactions release heat, and this will counteract the change as stated in Le Chatelier's Principle.
If the forward reaction is endothermic, then reducing the temperature will shift to the left. This occurs as the backward reaction is the exothermic reaction, and by Le Chatelier's Principle, the reaction will favor the reaction that produces more in to counter a reduction in temperature, in this case the backward direction reaction.
Answer:
a. H2S(g)/t = 1.48 mol/s
CS2(g)/t = 0.740mol/s
H2(g)/t = 2.96mol/s
b.
Ptot /t = 981torr/min
Explanation:
a. Based on the reaction:
CH4(g) + 2 H2S(g) → CS2(g) + 4 H2(g)
<em>1 mole of CH4 reacts with 2 moles of H2S producing 1 mole of CS2 and 4 moles of 4H2</em>
<em />
If CH4 decreases at the rate of 0.740mol/s, H2S decreases twice faster, that is 0.740mol/s = 1.48 mol/s
CS2 is produced with the same rate of CH4 because 1 mole of CH4 produce 1 mole of CS2 = 0.740mol/s
The H2 is produced four times faster than CH4 is decreased, that is:
0.740mol/s * 4 = 2.96mol/s
b. With the reaction:
2 NH3(g) → N2(g) + 3 H2(g)
2 moles of ammonia are consumed whereas 1 mole of N2 and 3 moles of H2 are produced.
That means 2 moles of gas are consumed and 4 moles of gas are produced.
If the NH3 decreases at a rate of 327torr/min, the gases are produced in a rate twice faster. That is 327torr/min*2 =
654torr/min
The rate of change of the total pressure is rate of reactants + rate of products:
654torr/min + 327torr/min =
981torr/min