The question is incomplete, here is the complete question.
A chemist prepares a solution of copper(II) fluoride by measuring out 0.0498 g of copper(II) fluoride into a 100.0mL volumetric flask and filling the flask to the mark with water.
Calculate the concentration in mol/L of the chemist's copper(II) fluoride solution. Round your answer to 3 significant digits.
<u>Answer:</u> The concentration of copper fluoride in the solution is 
<u>Explanation:</u>
To calculate the molarity of solute, we use the equation:

We are given:
Given mass of copper (II) fluoride = 0.0498 g
Molar mass of copper (II) fluoride = 101.54 g/mol
Volume of solution = 100.0 mL
Putting values in above equation, we get:

Hence, the concentration of copper fluoride in the solution is 
Answer:
The atom resembles plum pudding
Explanation:
The discovery of the electron in 1897 by J. J Thomson and the proton in 1917 by Rutherford most directly refuted or replace the idea that the atom resembles plum pudding.
Answer:
The final pressure is 2.25 atm or 1710 mm Hg
Explanation:
Step 1: Data given
The initial volume = 28.4 L
The initial pressure = 725 mm Hg ( = 725/760 atm) = 0.953947 atm
The initial temperature = 305 K
The new volume is 14.8 L
The new temperature = 375 K
Step 2: Calculate the new pressure
(P1*V1)/T1 = (P2*V2)/T2
⇒ with P1 = the initial pressure = 725 mmHg = 0.953947 atm
⇒ with V1 = the initial volume = 28.4 L
⇒ with T1 = The initial temperature = 305 K
⇒ with P2 = the new pressure = TO BE DETERMINED
⇒ with V2 = the new volume = 14.8 L
⇒ with T2 = the new temperature = 375 K
(0.953947 * 28.4)/305 = (P2 * 14.8)/375
P2 = 2.25 atm = 1710 mm Hg
The final pressure is 2.25 atm or 1710 mm Hg
Answer:
0.0745 mole of hydrogen gas
Explanation:
Given parameters:
Number of H₂SO₄ = 0.0745 moles
Number of moles of Li = 1.5107 moles
Unknown:
Number of moles of H₂ produced = ?
Solution:
To solve this problem, we have to work from the known specie to the unknown one.
The known specie in this expression is the sulfuric acid, H₂SO₄. We can compare its number of moles with that of the unknown using a balanced chemical equation.
Balanced chemical equation:
2Li + H₂SO₄ → Li₂SO₄ + H₂
From the balanced equation;
Before proceeding, we need to obtain the limiting reagent. This is the reagent whose given proportion is in short supply. It determines the extent of the reaction.
2 mole of Li reacted with 1 mole of H₂SO₄
1.5107 mole of lithium will react with
= 0.7554mole of H₂SO₄
But we were given 0.0745 moles,
This suggests that the limiting reagent is the sulfuric acid because it is in short supply;
since 1 mole of sulfuric acid produced 1 mole of hydrogen gas;
0.0745 mole of sulfuric acid will produce 0.0745 mole of hydrogen gas
The chemical that effects blood pressure for both the short and long term is Angiotensin II