The most viscous among the choices is D. Honey at room temperature.
Viscosities of liquids typically vary with temperature. The higher the temperature, the lower the viscosity. Among the choices, only motor oil and honey appear to be the most viscous. The clue that helps determined the answer are the words "hot" and "room temperature". Hot motor oil is less viscous, while honey at room temperature is more viscous. Even comparing their viscosities at room temperature, honey already has a higher viscosity than motor oil.
Answer:
Substitution mutation
Explanation:
A substitution mutation is a type of mutation in which one or more nucleotide base is replaced by another in a sequence. This will result in the replacement of one or more amino acid in the amino acid sequence.
This is the case in this question where the original amino acid sequence was given as: Leucine – Alanine – Glycine – Leucine. After mutation, the following mutated sequence was produced: Leucine – Alanine – Valine – Leucine.
As illustrated above, one would notice that there is replacement of GLYCINE amino acid by VALINE in the mutated sequence, hence, it is an example of SUBSTITUTION MUTATION.
I believe the ratio is 1:2
The drawing is correct because there are 12 atoms of each type on each side of the arrow.
Answer: 1+
Justification:
The ionization energies tell the amount of energy needed to release an electron and form a ion. The first ionization energy if to loose one electron and form the ion with oxidation state 1+, the second ionization energy is the energy to loose a second electron and form the ion with oxidation state 2+, the third ionization energy is the energy to loose a third electron and form the ion with oxidation state 3+.
The low first ionization energy of element 2 shows it will lose an electron relatively easily to form the ion with oxidations state 1+.
The relatively high second ionization energy (and third too) shows that it is very difficult for this atom to loose a second electron, so it will not form an ions with oxidation state 2+. Furthermore, given the relatively high second and third ionization energies, you should think that the oxidation states 2+ and 3+ for element 2 never occurs.
Therefore, the expected oxidation state for the most common ion of element 2 is 1+.