Answer:
The problem solution is given in the attachments.
Answer:
53.6 grams of silver chloride was produced.
Explanation:

Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
Mass of silver nitrate = 50.0 g
Mass of hydrogen chloride = 50.0 g
Mass of silver chloride = x
Mass of nitric acid = 46.4 g
Mass of silver nitrate + Mass of hydrogen chloride =
Mass of silver chloride + Mass of nitric acid
[te]50.0 g+50.0 g=x+46.4 g[/tex]

53.6 grams of silver chloride was produced.
Explanation:
As it is known that in solids, molecules are held together because of strong intermolecular forces of attraction. As a result, they are held together and have definite shape and volume.
Whereas in liquids, molecules are not held so strongly as they are in solids. Hence, they move from their initial position and they do not have definite shape but they have definite volume.
Liquids obtain the shape of container in which they are kept.
In gases, molecules are held together by weak intermolecular forces. As a result, they move far apart from each other and occupy the space of a container or vessel in which they are placed.
The physical state (at room temperature) of the following are determined as follows:
(a) Helium in a toy balloon : Helium at room temperature exists as a gas. So, when helium is present in a toy balloon then it acquires the volume of toy balloon.
(b) Mercury in a thermometer : Mercury at room temperature exists as a liquid. When it is placed in a thermometer then volume of mercury does not get affected.
(c) Soup in a bowl : Since, soup is a liquid. Hence, its volume will not change according to the volume of container.
Answer:

Explanation:
We must convert formula units of Zn(ClO₃)₂ to moles and then to grams of Zn(ClO₃)₂.
Step 1. Convert formula units to moles

Step 2. Convert moles to grams

Answer:
It is equal to the number of moles of acid that reacted. When Oxalic acid is your limiting reactant it is the # of moles of oxalic acid used. When NaOH is your limiting reactant it is equal to the number of moles of NaOH used.