Answer:
A hydrogen bonding is a bond class that is produced from the attraction existing in a hydrogen atom and an oxygen, fluorine or nitrogen atom with a negative charge. This attraction, meanwhile, is known as dipole-dipole interaction and links the positive pole of one molecule with the negative pole of another.
Explanation:
The hydrogen atom, which has a positive charge, is known as the donor atom, while the oxygen, fluorine, chlorine or nitrogen atom is the bond acceptor atom. In the substance in which they are most effective is in the water.
Hydrogen bonds have only one third of the strength of covalent bonds, but they have important effects on the properties of the substances in which they occur, especially in terms of melting and boiling points in crystal structures.
Answer:C.people with perfect understanding of science.
Answer:but-1-ene
Explanation:This is an E2 elimination reaction .
Kindly refer the attachment for complete reaction and products.
Sodium tert-butoxide is a bulky base and hence cannot approach the substrate 2-chlorobutane from the more substituted end and hence major product formed here would not be following zaitsev rule of elimination reaction.
Sodium tert-butoxide would approach from the less hindered side that is through the primary centre and hence would lead to the formation of 1-butene .The major product formed in this reaction would be 1-butene .
As the mechanism of the reaction is E-2 so it will be a concerted mechanism and as sodium tert-butoxide will start abstracting the primary hydrogen through the less hindered side simultaneously chlorine will start leaving. As the steric repulsion in this case is less hence the transition state is relatively stabilised and leads to the formation of a kinetic product 1-butene.
Kinetic product are formed when reactions are dependent upon rate and not on thermodynamical stability.
2-butene is more thermodynamically6 stable as compared to 1-butene
The major product formed does not follow the zaitsev rule of forming a more substituted alkene as sodium tert-butoxide cannot approach to abstract the secondary proton due to steric hindrance.
Answer:
Air
Explanation:
It takes up space/ the rest do not