We know that
if cos x is positive
and
sin x is negative
so
the angle x belong to the IV quadrant
cos x=5/13
we know that
sin²x+cos²x=1-------> sin²x=1-cos²x------> 1-(5/13)²---> 144/169
sin x=√(144/169)-------> sin x=12/13
but remember that x is on the IV quadrant
so
sin x=-12/13
Part A) <span>cos (x/2)
cos (x/2)=(+/-)</span>√[(1+cos x)/2]
cos (x/2)=(+/-)√[(1+5/13)/2]
cos (x/2)=(+/-)√[(18/13)/2]
cos (x/2)=(+/-)√[36/13]
cos (x/2)=(+/-)6/√13-------> cos (x/2)=(+/-)6√13/13
the angle (x/2) belong to the II quadrant
so
cos (x/2)=-6√√13/13
the answer Part A) is
cos (x/2)=-6√√13/13
Part B) sin (2x)
sin (2x)=2*sin x* cos x------> 2*[-12/13]*[5/13]----> -120/169
the answer Part B) is
sin(2x)=-120/169
Answer:
Step-by-step explanation:
8x-1+6x+13=180 degree(being co interior angle)
14x=180-12
x=168/14
x=12
Answer:
GRAPH IS IN THE PICTURE BELOW
Step-by-step explanation:
Find the value of the trigonometric function of t form the given information
Cost=-8/17,terminal point of t is in quadrant 3rd in which cos<0, sin<0
Sint=-√(1-cos^2t)=-√(1-64/289)
=-√(225/289)=-15/17
Tant =sin/cos= -15/-8=15/8
Csc t=-17/15
Sect =-17/8
Cot=8/15
Answer: 9 units
Step-by-step explanation: