Answer:
5.96 g/cm^3
Explanation:
Corner atom = 1/8
Atoms in center = 1
Atoms in face of the cube= 1/2
Molar mass of V = 50.94 g/mol <em>(from period table)</em>
1 mole = 6.02x10^23
<em>In BCC unit cell:</em>
(8 x 1/8)+ 1=2 per 1 unit cell
<em>Mass: </em>2(50.94g)/6.02x10^23 = 1.69x10^-22 g/unit cell
305pm=(305x10^-12m÷10^-2m) x (1mL÷1cm^3)
= 2.837 x 10^-23 mL
<em>1pm=10^-12m</em>
<em>1cm=10^-2m</em>
<em>1mL=1cm^3</em>
<em></em>
density=mass/volume
density of V = 1.69x10^-22g÷2.837x10^-23mL
=5.957g/mL
=5.96g/cm^3
MAl₂(SO₄)₃·xH₂O:
(mAl×2) + (mS×3) + (mO×12) + (mH₂O×x)
(27×2)+(32×3)+(16×12)+(x×18) = 342 + 18x [g]
mAl₂: 27×2 = 54 [g]
54g ---------- 13,63%
342+18x ---- 100%
0,1363(342+18x) = 54
46,6146 + 2,4534x = 54
2,4534x = 7,3854
x ≈ 3
>>> Al₂(SO₄)₃·3H₂O <<<<
:)
<span>The atoms or molecules attain enough kinetic energy to overcome any intermolecular attractions they have. Since there are no longer any attractive forces between the particles, they are free to drift away into space. The same sort of thing happens in ordinary evaporation, but only at the surface. </span>
The correct answer is c. Please give me brainlest let me know if it’s correct or not thanks bye