The electron should experience a greater acceleration due to it's significantly smaller mass and should fall through distance "d" in a shorter amount of time.
<u>Explanation:</u>
The electron force can be expressed as F=qE. According to Newton's second law of motion force can be expressed as F=ma. This can be written as a=F/m. Substituting electric force expression for "F" in this equation, we get a=qE/m. This means acceleration is conversely proportional to mass and directly to electric field and charge. This means that proton having significantly larger mass than electron should experience smaller amount of acceleration and would take longer to fall at distance "d".
On the other hand, the electron would experience greater acceleration due to it's significantly smaller mass and would fall faster at distance "d", unlike the situation of proton.
The balanced chemical reaction is written as:
<span>4C(s) + S8(s) → 4CS2(l)
We are given the amount of carbon and sulfur to be used in the reaction. We need to determine first the limiting reactant to be able to solve this correctly.
</span>7.70 g C ( 1 mol / 12.01 g) =0.64 mol C
19.7 g S8 ( 1 mol / 256.48 g) = 0.08 mol S8
The limiting reactant would be S8. We use this amount to calculate.
0.08 mol S8 ( 4 mol CS2 / 1 mol S8 ) ( 256.48 g / 1 mol ) = 78.8 g CS2
Radioactivity comes from unstable atoms of certain elements. Radioactivity consists of alpha radiation (2 protons and 2 neutrons), beta radiation (1 electron), or gamma radiation (Electromagnetic photons).
The temperature of the air, pavement, and the type of ice-melt compound used will affect the rate at which the ice melts. There are many different ice-melt compounds available from traditional rock salt (sodium chloride) to ice-melt pellets (calcium chloride).
This is what i have found i hope this helps