Answer:
Have the same number of electrons in their outer energy levels
Explanation:
Elements in the same group have similar chemical properties because they have the same number of valence electron(s) in their outermost shell.
Chlorine and Iodine have similar chemical properties because they have the same number of valence electron in their outermost shell. This can be seen from their electronic configuration as shown below:
Cl (17) => 1s² 2s²2p⁶ 3s²3p⁵
I (53) => [Kr] 4d¹⁰ 5s²5p⁵
From the above illustration:
Outer shell of Cl (3s²3p⁵) = 2 + 5 = 7 electrons
Outer shell of I (5s²5p⁵) = 2 + 5 = 7 electrons
Since they have the same number of valence electrons, therefore, they will have similar chemical properties.
Answer:
Glucose and oxygen are required for cellular respiration. As the law of conversation states, in a biochemical reaction, mass is conserved. The mass of hydrogen in the glucose is therefore conserved in the water molecules products.
In general, we have this rate law express.:
![\mathrm{Rate} = k \cdot [A]^x [B]^y](https://tex.z-dn.net/?f=%5Cmathrm%7BRate%7D%20%3D%20k%20%5Ccdot%20%5BA%5D%5Ex%20%5BB%5D%5Ey)
we need to find x and y
ignore the given overall chemical reaction equation as we only preduct rate law from mechanism (not given to us).
then we go to compare two experiments in which only one concentration is changed
compare experiments 1 and 4 to find the effect of changing [B]
divide the larger [B] (experiment 4) by the smaller [B] (experiment 1) and call it Δ[B]
Δ[B]= 0.3 / 0.1 = 3
now divide experiment 4 by experient 1 for the given reaction rates, calling it ΔRate:
ΔRate = 1.7 × 10⁻⁵ / 5.5 × 10⁻⁶ = 34/11 = 3.090909...
solve for y in the equation
![\Delta \mathrm{Rate} = \Delta [B]^y](https://tex.z-dn.net/?f=%5CDelta%20%5Cmathrm%7BRate%7D%20%3D%20%5CDelta%20%5BB%5D%5Ey)

To this point,
![\mathrm{Rate} = k \cdot [A]^x [B]^1](https://tex.z-dn.net/?f=%5Cmathrm%7BRate%7D%20%3D%20k%20%5Ccdot%20%5BA%5D%5Ex%20%5BB%5D%5E1%20)
do the same to find x.
choose two experiments in which only the concentration of B is unchanged:
Dividing experiment 3 by experiment 2:
Δ[A] = 0.4 / 0.2 = 2
ΔRate = 8.8 × 10⁻⁵ / 2.2 × 10⁻⁵ = 4
solve for x for
![\Delta \mathrm{Rate} = \Delta [A]^x](https://tex.z-dn.net/?f=%5CDelta%20%5Cmathrm%7BRate%7D%20%3D%20%5CDelta%20%5BA%5D%5Ex)

the rate law is
Rate = k·[A]²[B]
Answer:
<em>Butane has only two isomers and pentane has just three, but some hydrocarbons have many more isomers than these. As you increase the number of carbon atoms in a hydrocarbon, the number of isomers quickly increases.</em>
<em />
I believe the correct answer from the choices listed above is the third option. Brass is an example of a solution. Brass<span> is a homogeneous </span>mixture<span> of copper and zinc in which the concentration of zinc and copper is the same throughout the entire </span>mixture making it a solid solution.